期刊文献+

基于时空数据的用户社交联系强度研究 被引量:3

Social Strength Learning between Users Based on Spatiotemporal Data
下载PDF
导出
摘要 word2vec是Google推出的一款将词表征为实数值的高效开源工具。采用该工具将时空数据中的每位用户表征为一个实数值向量并预测用户间社交联系的强度。提出了在word2vec学习过程中动态调整学习率的算法——Location-weight算法,根据不同位置的不同用户数目在学习过程中加入位置权重,并探索其对用户社交联系强度预测的影响。实验结果表明,加入位置权重的学习算法提高了用户社交联系强度预测的准确性。 Word2vec is a high-efficiency open-source tool issued by Google,which represents a word with a float vector.We used this tool to process spatiotemporal data.Each user is represented with a float vector to predict social strength among users.To predict social strength among users more precisely,this paper proposed a location-weight algorithm that dynamically adjusts the learning rate in the process of learning with word2 vec.According to the number of different users at different locations,we added location weight to the algorithm in the process of learning.Meanwhile,we explored the effect of location-weight on prediction of social strength among users.Experimental results validate performance of the proposed algorithm.
出处 《计算机科学》 CSCD 北大核心 2016年第1期251-254,274,共5页 Computer Science
基金 国家自然科学基金(61373092 61033013 61272449 61202029) 江苏省教育厅重大项目(12KJA520004) 江苏省科技支撑计划重点项目(BE2014005) 广东省重点实验室开放课题(SZU-GDPHPCL-2012-09)资助
关键词 word2vec 位置权重 用户社交联系强度 word2vec Location weight Social strength
  • 相关文献

参考文献12

  • 1Pham H, Shahabi C, Liu Y. Ebm: an entropy-based model to in- fer social strength from spatiotemporal data[C]//Proceedings of the 2013 International Conference on Management of Data. ACM, 2013 : 265-276.
  • 2Gonzalez M C, Hidalgo C A,Barabasi A L. Understanding indi- vidual human mobility patterns[J]. Nature, 2008,453 (7196) : 779-782.
  • 3Cheng Z, Caverlee J, Lee K, et al. Exploring Millions of Foot- prints in Location Sharing Services[C]//ICWSM. 2011 : 81-88.
  • 4Lindqvist J, Cranshaw J, Wiese J, et al. I' m the mayor of my house:examining why people use foursquare-a social-driven lo- cation sharing application[C]//Proceedings of the SIC-CHI Con- ference on Human Factors in Computing Systems. ACM, 2011: 2409-2418.
  • 5Kostakos V, Venkatanathan J, Reynolds B, et al. Who ' s your best friend-targeted privacy attacks In location-sharing social networks[C]//Proceedings of the 13th International Conference.on Ubiquitous Computing. ACM,2011:177-186.
  • 6Crandall D J, Backstrom L, Cosley D, et al. Inferring social ties from geographic coincidences[J]. Proceedings of the National A- cademy of Sciences,2010,107(52):22436-22441.
  • 7Cranshaw J,Toch E, Hong J, et al. Bridging the gap between physical location and online social networks[C]//Proceedings of the 12th ACM International Conference on Ubiquitous Compu- ting. ACM, 2010 .. 119-128.
  • 8Li Q, Zheng Y,Xie X,et al. Mining user similarity based on lo- cation history[C]//Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Informa- tion Systems. ACM, 2008 : 34.
  • 9Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J], arXiv preprint arXiv: 1301. 3781,2013.
  • 10李敏,王晓聪,张军,刘正捷.基于位置的社交网络用户签到及相关行为研究[J].计算机科学,2013,40(10):72-76. 被引量:20

二级参考文献23

  • 1Vieweg S, Hughes A L, Starbird K L. Mieroblogging during two natural hazards events: What twitter may contribute to situa- tional awareness[C]//Proceeding of CHI. 2010:1079-1088.
  • 2Java A, Song X, Finin T. Why we twitter: Understanding mi- croblogging usage and communities[C]//Proceeding of WebK- DD/SN AKDD. 2007.
  • 3Kwak H,Lee C,Park H,et al. What is Twitter,a social network or a news media[C]//Proceeding of WWW. 2010.
  • 4Bernardo A H, Daniel M, Romero, et al. Social networks that matter: Twitter under the mieroscope [ J ]. First Monday, 2009, 14(1).
  • 5Baekstrom L, Sun E, Marlow C. Find me if you can: improving geographical prediction with social and spatial proximity[C]// WWW. 2010:61-70.
  • 6Cheng Z,Caverlee J, Lee K. You are where you tweet: a content- based approach to geo-locating twitter users[M]. ACM CIKM, 2010 : 759-768.
  • 7Lindqvist J, Cranshaw J, Wiese J, et al. I ' m the mayor of my house: examining why people use foursquare-a social-driven lo- cation sharing applieation[M]. ACM CHI, 2011 : 2409-2418.
  • 8Kostakos V, Venkatanathan J, Reynolds B. Who's Your Best Friend-Targeted Privacy Attacks In Location-sharing Social Networks[C]// Proceedings of UbiComp' 11. Beijing, China: ACM Press,September 2011:177-186.
  • 9Zhiyuan C,James C,Kyumin L, et al. Exploring Millions of foot- prints in location Sharing Serviees[C] // ICWSM. 2011.
  • 10Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding indi- vidual human mobility pattems[J]. Proceedings of ACL, 2008, 453(7196) :779-782.

共引文献19

同被引文献15

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部