期刊文献+

MPCVD谐振腔内电磁场分布的数值模拟 被引量:2

Numerical Simulation of Electromagnetic Fields of MPCVD Resonance Cavity
下载PDF
导出
摘要 采用时域有限差分算法对MPCVD装置谐振腔中电磁波的分布进行了数值计算;推导出麦克斯韦方程在谐振腔内电磁场分布的数学模型;采用Ansoft软件对腔体中的电磁分布进行了模拟。根据模拟的电场形状以及其它相关的数据来判断此时反应器的形状和性能。数值模拟结果表明,空腔有3个大小相近的电场均匀区域,谐振腔的固有品质因素相对较高。计算模拟结果与实验结果较吻合,验证了计算和模拟的正确性,为设计利用MPCVD技术沉积金刚石薄膜的谐振腔提供了参考依据。 Based on the finite difference time domain method (FDTD), the distribution of the electromagnetic field for a given resonance cavity is numerically calculated. A mathematical model, which is based on the Maxwell Equation, is deduced to describe the electromagnetic field distribution of the cavity. The electromagnetic field distribution in the microwave resonance cavity is analyzed with Ansoft software. The properties of the cavity are judged according to the distribution of the electromagnetic field. The simulation results show that there are three even electric field regions, with the same size, in the empty cylinder microwave resonance, and that the cavity has a high quality. The numerical simulation results are in accordance with the experimental results.
作者 刘繁 汪建华
出处 《材料导报》 EI CAS CSCD 北大核心 2007年第S2期275-276,共2页 Materials Reports
关键词 MPCVD谐振腔 FDTD法 电磁场 数值模拟 MPCVD resonance cavity, FDTD method, electromagnetic field, numerical simulation
  • 相关文献

参考文献1

二级参考文献46

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2Brunotte X, Meunier G, Imhoff J F. Finite modeling of unbounded problems using transformation: a rigorous, powerful and easy solution". IEEE Trans. on Magnetics, 1992, 28(2): 1663-1666
  • 3Tang Renyuan, Hu Yan, Liang Zhenguang, et al. Computation of 3-D open boundary eddy-current fields in large transformers using T, ψ-фm method coupled with GTM. IEEE Trans. On Magnetics, 2002, 38(2): 1257-1260
  • 4Bossavit A, Verite J C. A mixed FEM-BIEM method to solve 3-D eddy current problem. IEEE Trans. on Magnetics, 1982, 18:431-435
  • 5Bossavit A. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A, 1988, 135: 493-500
  • 6Whitney H. Geometric Integration Theory. Princetown University Press, 1957
  • 7Preisach F. Uber die magnetische nachwirkung. Zeitschrift fur Physik., 1935, 94: 277-302
  • 8Mayergoyz I M. Mathematical models of hysteresis. IEEE Trans. on Magnetics, 1986, 22(5): 603-608
  • 9Vadja F, Della Torre E. Measurement of output dependent Preisach functions. IEEE Trans.on Magnetics, 1991, 27:4757-4762.
  • 10Bertotti G, Basso V. Considerations on the physical interpretation of the Preisach model of ferromagnetic hysteresis. J. Appl. Phys. 1993, 73: 5827-5829

共引文献13

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部