期刊文献+

牙周组织工程研究进展 被引量:11

Development of periodontal tissue engineering
下载PDF
导出
摘要 牙周炎是炎症破坏性疾病,会导致牙周韧带、牙骨质、牙槽骨等牙齿支持组织破坏吸收。牙周炎也是成人失牙最主要的原因。在控制感染的基础上重建牙周组织是牙周病治疗的最终目标。牙周组织重建过程涉及多种软、硬组织(牙周韧带、牙龈、牙骨质和骨),其关键是牙骨质、牙槽骨及牙周韧带锚定结构的重构。该文对牙周组织工程的支架材料、支架的三维结构、支架的抗菌性、牙骨质再生的研究进展予以综述。虽然近年来牙周组织工程领域取得了较大的进展,但迄今为止,这些研究尚处于初级阶段,牙骨质及其与牙周膜界面的修复再生还未能实现。牙周组织再生治疗的有效技术尚需大量动物实验、临床实验验证效果。 Periodontitis is an inflammatory disease that causes loss of the tooth-supporting apparatus, including periodontal ligament, cementum, and alveolar bone. Periodontitis is a major cause of tooth loss for aduhs. Periodontia reconstruction based on infection control is the key solution to periodontal treatment. For a successful clinical out-come, periodontal regeneration requires the coordinated response of multiple soft and hard tissues ( periodontal hgament, gingiva, cementum, and bone) during the wound-healing process. A critical requirement is the ability to promote the formation of functional perio- dontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in scaffold of periodontal tissue engineering, as well as its 3D structure, antibiosis and cementum regeneration. Progress on the development periodontal tissue engineering is in the early stages of development, the regeneration of cementum and periodontal ligament complex is still under research all over the world. The constructs need to be tested in large animal models and, ultimately, human clinical trials.
出处 《医学研究生学报》 CAS 北大核心 2016年第1期3-9,共7页 Journal of Medical Postgraduates
关键词 牙周组织工程 CEMP1 三维支架 静电纺丝 Periodontal tissue engineering CEMP1 Three-dimensional scaffold Electrostatic spinning
  • 相关文献

参考文献2

二级参考文献80

  • 1刘道志,奚廷斐.微创介入医疗器械与材料产业的现状和发展趋势[J].中国医疗器械信息,2006,12(12):1-14. 被引量:19
  • 2Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2009, 119(3): 480-486.
  • 3Tillman BW, Yazdani SK, Lee SJ, et al. The in vivo stability of electro- spun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials, 2009, 30(4): 583-588.
  • 4Buijtenhuijs P, Buttafoco L, Poot AA, et al. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Biotechnol Appl Biochem, 2004, 39(2): 141-149.
  • 5Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog Polym Sci, 2008, 33(9): 853-874.
  • 6Sarkar S, Schmitz-Rixen T, Hamilton G, et al. Achieving the ideal properties for vascular bypass grafts using a tissue engineered ap- proach: a review. Med Biol Eng Comput, 2007, 45(4): 327-336.
  • 7Wang X, Lin P, Yao Q, et al. Development of small-diameter vascular grafts. World l Surg, 2007, 31 (4): 682-689.
  • 8Thomas AC, Campbell GR, Campbell JH. Advances in vascular tissue engineering. Cardiovasc Pathol, 2003, 12(5): 271-276.
  • 9Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biol, 2000, 19(4): 353-357.
  • 10Madhavan K, Belchenko D, Motta A, et al. Evaluation of composition and crosslinking effects on collagen-based composite constructs. Acta Biomater, 2010, 6(4): 1413-1422.

共引文献5

同被引文献105

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部