期刊文献+

Anisotropic and temperature-dependent growth mechanism of S-phase precipitates in Al-Cu-Mg alloy in relation with GPB zones 被引量:4

温度作用下与GPB区相关的Al-Cu-Mg合金中S相的各向异性生长机制(英文)
下载PDF
导出
摘要 By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology. 采用原子分辨率成像和第一性原理计算,研究S析出相颗粒在高强Al-Cu-Mg合金晶粒内部的生长行为。结果表明,S相的形核和生长具有很强的各向异性特征和受温度影响的特征,同时伴随低维相转变。事实上,在较高的时效温度下(高于180°C),存在两种特征的GP区,它们决定S相晶体的生长机制。一种是S相本身的前驱体相,另一种是Guinier–Preston–Bagaryatsky(GPB)区的结构单元或其前驱体相。在较高温度下,GPB区的结构单元会在S相周围形成,并阻碍S相沿宽度方向的生长,导致S相长成柱状晶体;而在低温下,S相的生长不受GPB区的干扰,形成板条状形貌。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期1-11,共11页 中国有色金属学报(英文版)
基金 Projects(51371081,11427806,51471067,51171063) supported by the National Natural Science Foundation of China Project(2009CB623704) supported by the National Basic Research Program of China
关键词 aluminum alloy precipitation age hardening ANISOTROPY crystal growth 铝合金 析出相 时效强化 各向硬性 晶体生长
  • 相关文献

参考文献55

  • 1The Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook (vol.3): Aluminum alloy and magnesium alloy[M]. 2nd ed. Beijing: Standards Press of China, 2001: 148-167. (in Chinese).
  • 2ROSALES B M, IANNUZZI M. Aluminium AA2024 T351 aeronautical alloy. Part I: Microbial influenced corrosion analysis[J]. Mater Sci Eng A, 2008,472(1-2): 15-25.
  • 3WANG S B, CHEN J H, YIN M J, LIU Z R, YUAN D W, LIU J Z, LID C H, WU C L. Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AICuMg alloys[J]. Acta Mater, 2012, 60(19): 6573-6580.
  • 4LIU Z R, CHEN J H, WANG S B, YUAN D W, YIN M J, WU C L. The structure and the properties of S-phase in AICuMg alloys[J]. Acta Mater, 2011, 59(19): 7396-7405.
  • 5RINGER S P, HONO K, POLMEAR I J, SAKURAI T. Precipitation processes during the early stages of ageing in AI-Cu-Mg alloys[J]. Appl Surf Sci, 1996,94-95: 253-260.
  • 6RINGER S P, HONO K, POLMEAR I J, SAKURAI T. Nucleation of precipitates in aged AICuMg(Ag) alloys with high Cu:Mg ratios[J]. Acta Mater, 1996,44(5): 1883-1898.
  • 7RINGER S P, SOFYAN B T, PRASAD K S, QUAN G C. Precipitation reactions in AI-4.0Cu-0.3Mg(wt.%) alloy[J]. Acta Mater, 2008, 56(9): 2147-2160.
  • 8SHA G, MARCEAU R K W, GAO X, MUDDLE B C, RINGER S P. Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes[J]. Acta Mater, 2011, 59(4): 1659-1670.
  • 9KOVARIK L, COURT S A, FRASWE H L, MILLS M J. GPB zones and composite GPB/GPB II zones in AI-Cu-Mg alloys[J]. Acta Mater, 2008, 56(17): 4804-4815.
  • 10KOVARIK L, MILLS M J. Structural relationship between one-dimensional crystals of Guinier-Preston-Bagaryatsky zones in Al-Cu-Mg alloys[J]. Scripta Mater, 2011, 64(11): 999-1002.

二级参考文献69

  • 1Perdew JP,Burke K,Ernzerhof M.Generalized gradient approximation made simplePhysical Review,1996.
  • 2S. Ramasubramanian,M. Rajagoplan,R. Thangavel,J. Kumar.Ab initio study on elastic and thermodynamical properties of Ti1-xZrxC[J]. The European Physical Journal B . 2009 (2)
  • 3S. P. Dodd,M. Cankurtaran,B. James.Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC[J]. Journal of Materials Science . 2003 (6)
  • 4MANSOUR R,,MAZIAR S Y,MOHAMMAD R R,SEYED S,RAZAVI T.The effect of production method on properties of Fe-TiC composite. International Journal of Mineral Processing . 2010
  • 5ZHOU,C T,XIAO B,FENG J,XING JD,XIE X J,CHEN Y H ETAL.First principles study on the elastic properties and electronic structures of(Fe,Cr)3C. Computational Materials Science . 2009
  • 6FERREIRA L G,WEI S H,ZUNGER A.Stability,electronic structure and phase diagrams of novel inter-semiconductor compounds. International Journal of Supercomputer Applications and High Performance Computing . 1991
  • 7AHUJA R,,ERIKSSON O,WILLS J M,JOHNSSON B.Structural,elastic,and high-pressure properties of cubic TiC,TiN,and TiO. Physical Review B Condensed Matter and Materials Physics . 1996
  • 8CLERC D G,LEDBETTER H M.Mechanical hardness:A semiempirical theory based on screened electrostatics and elastic shear. J Phs Chem Solid . 1998
  • 9CLERC D G,LEDBETTER H M.Mechanical hardness:A semiempirical theory based on screened electrostatics and elastic shear. J Phs Chem Solid . 1998
  • 10PUGH S F.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine . 1954

共引文献3

同被引文献24

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部