期刊文献+

Synthesis and characterization of Ti-Co alloy foam for biomedical applications 被引量:1

生物医学用泡沫Ti-Co合金的制备与表征(英文)
下载PDF
导出
摘要 Highly porous Ti-Co alloy specimens for biomedical applications were synthesized by powder metallurgy based space holder technique. Ti alloys have high melting temperature and affinity for oxygen, which makes Ti alloys difficult to be processed. The Co addition reduces the melting temperature and Ti-Co alloy was sintered at lower temperatures. The electrochemical corrosion behaviour of the specimens was examined in the artificial saliva solution. The effects of Co content of the alloy, the p H value and fluoride concentration of the artificial saliva solution on the electrochemical corrosion properties of the specimens were investigated. The microstructure and mechanical properties of the specimens were examined. The electrochemical impedance spectroscopy results indicate that the corrosion resistance of the specimens decreases at high fluoride concentrations and low p H value. The defect density increases with increasing the fluoride concentration and decreasing the p H value of artificial saliva according to Mott-Schottky analysis. 采用粉末冶金技术添加造孔剂制备生物医学用高孔隙度Ti-Co合金。Ti合金因具有高的熔点和氧亲和力。而难以进行直接加工。添加Co能降低其熔点,因而Ti-Co合金能在更低的温度进行烧结。在人工唾液中考察制备的Ti-Co合金样品的电化学腐蚀行为。研究合金的Co含量、人工唾液的p H值和氟离子浓度升高对样品的电化学腐蚀性能的影响对样品的显微组织和力学性能进行测试。电化学阻抗谱分析结果表明,样品的耐蚀性随氟离子浓度升高和p H值降低而降低。根据Mott-Schottky分析,缺陷密度随氟离子浓度的增加和人工唾液p H值的降低而增加。
作者 Ilven MUTLU
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期126-137,共12页 中国有色金属学报(英文版)
基金 supported partially by Scientific Research Projects Coordination Unit of Istanbul University, Project numbers 42796 and 42922
关键词 Ti-Co alloy metal foam powder metallurgy electrochemical corrosion biomedical implant Ti-Co合金 金属泡沫 粉末冶金 电化学腐蚀 生物医学植入物
  • 相关文献

参考文献1

二级参考文献12

  • 1Dunand D.C.,Processing of titanium foams,Adv.Eng.Mater.,2004,6(6):369.
  • 2Degischer H.P.and Kriszt B.,Handbook of Cellular Metals:Production,Processing,Applications,Wiley-VCH Verlag GmbH,Weinheim,2002:18.
  • 3Li J.P.,Li S.H.,de Groot K.,and Layrolle P.,Preparation and characterization of porous titanium,Key Eng.Mater.,2002,218:51.
  • 4Barrabés M.,Sevilla P.,Planell J.A.,and Gil F.J.,Mechanical properties of nickel-titanium foams for reconstructive orthopaedics,Mater.Sci.Eng.C,2008,28:23.
  • 5Murray N.G.D.and Dunand D.C.,Effect of thermal history on the superplastic expansion of argon-filled pores in titanium:Part Ⅰ.Kinetics and microstructure,Acta Mater.,2004,52:2269.
  • 6Laptev A.,Vyal O.,Brain M.,Buchkremer H.P.,and Stover D.,Green strength of powder compacts provided for production of highly porous titanium parts,Powder Metall.,2005,48 (4):358.
  • 7Kotan G.and Bor A.S.,Production and characterization of high porosity Ti-6Al-4V foam by space holder technique in powder metallurgy,Turk.J.Eng.Environ.Sci.,2007,31:149.
  • 8Wen C.E.,Mabuchi M.,Yamada Y.,Shimojima K.,Chino Y.,and Asahina T.,Processing of biocompatible porous Ti and Mg,Scripta Mater.,2001,45:1147.
  • 9Esen Z.and Bor S.,Processing of titanium foams using magnesium spacer particles,Scripta Mater.,2007,56:341.
  • 10Wen C.E.,Yamada Y.,Shimojima K.,Chino Y.,Asahina T.,and Mabuchi M.,Processing and mechanical properties of autogenous titanium implant materials,J.Mater.Sci.Mater.Med.,2002,13:397.

共引文献2

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部