期刊文献+

具有扩散的三种群食物链模型的Hopf分支 被引量:3

Hopf bifurcation of three species food chain model with diffusion
下载PDF
导出
摘要 研究了一类在Neumann边界条件下,具有扩散现象和群体防卫能力的三种群食物链模型的Hopf分支,以捕食者的死亡率为分支参数,利用Hurwitz判据讨论了系统正常数平衡解的稳定性,并通过理论分析给出了Hopf分支产生的条件,又利用规范形理论和中心流形定理得到了空间非齐次情形下Hopf分支的方向和分支周期解的稳定性。 The Hopf bifurcation of a class of deterministic model, which is three species food chain with diffusion phenomenon and group defense ability subject to Neumann boundary condition, is investigated. By treating the death rate of predator as bifurcation parameter, the stability of the positive constant equilibrium solution is discussed by use of Hurwitz criterion. Then, the conditions which can raise the Hopf bifurcation are given through the theoretical analysis. And also, the normal form method and center manifold theorem are used to study the Hopf bifurcation direction and stability of bifurcating periodic solutions of the spatial nonhomogeneous.
作者 李瑜 李艳玲
出处 《计算机工程与应用》 CSCD 北大核心 2016年第3期1-6,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.10971124) 高等学校博士学科点专项科研基金(No.200807180004)
关键词 食物链模型 HOPF分支 扩散 food chain model Hopf bifurcation diffusion
  • 相关文献

参考文献16

  • 1Hastings A,Powell T.Chaos in a three-species food chain[J].Ecology,1991,72(3):896-903.
  • 2Ginoux J M,Rossetto B,Jamet J L.Chaos in a threedimensional Volterra-Gause model of predator-prey type[J].International Journal of Bifurcation and Chaos,2005,15(5):1689-1708.
  • 3Liu G R,Yan W P,Yan J R.Positive periodic solutions for a class of neutral delay Gause-type predator-prey system[J].Nonlinear Analysis:Theory,Methods and Applications,2009,71(10):4438-4447.
  • 4Wang H B,Jiang W H.Hopf-pitchfork bifurcation in van der Pol’s oscillator with nonlinear delayde feedback[J].Journal of Mathematical Analysis Applications,2010,368(1):9-18.
  • 5Freedman H I,Waltman P.Mathematical analysis of some three species food chains models[J].Mathematical Biosciences and Engineering,1997,33:257-276.
  • 6Gard T C,Hallam T G.Persistence in food webes-1:LotkaVolterra food chains[J].Bulletin of Mathematical Biology,1979,41:879-891.
  • 7Gard T C.Persistence in food webs:Holling-type food chains[J].Mathematical Biosciences and Engineering,1980,49:61-69.
  • 8Gard T C.Top perdator persistence in differential equation models of food chains;the effect of omnivory and extermal forcing of tomer trophic levels[J].Mathematical Biosciences and Engineering,1982,14:285-299.
  • 9Freedman H I,Waltman P.Persistence in models of interacting predator-prey population[J].Mathematical Biosciences and Engineering,1984,68:213-231.
  • 10Freedman H I,So T W H.Global stability and persistence of simple food chains[J].Mathematical Biosciences and Engineering,1985,76:69-86.

二级参考文献11

  • 1Liu Weiming,J Math Anal Appl,1994年,182卷,250页
  • 2黄琳,稳定性理论,1992年
  • 3Freedman H I, Waltman P. Mathematical Analysis of Some Three-Species Food-Chain Models [J]. Mathematical Biosciences, 1977, 33(3): 257-276.
  • 4Ginoux J M, Rossetto B, Jamet J L. Chaos in a Three-Dimensional Volterra-Gause Model of Predator-Prey Type [J]. International Journal of Bifurcation and Chaos, 2005, 15(5): 1689-1708.
  • 5Hastings A, Powell T. Chaos in a Three-Species Food Chain [J]. Ecology, 1991, 72(3): 896-903.
  • 6LIU Gui-rong, YAN Wei-ping, YAN Ju-rang. Positive Periodic Solutions for a Class of Neutral Delay Gause-Type Predator-Prey System [J]. Nonlinear Analysis: Theory, Methods Applications, 2009, 71(10): 4438-4447.
  • 7WANG Hong-bin, JIANG Wei hua. Hopf-Pitchfork Bifurcation in Van Der Pol's Oscillator with Nonlinear Delayed Feedback [J]. Journal of Mathematical Analysis Applications, 2010, 368(1): 9-18.
  • 8GUO Shuang, LIU Yang, SHA Yuan-xia, et al. Stability and Bifurcation Analysis on Gause-Type Predator-Prey Model [J]. Journal of Jilin University: Science Edition, 2012, 50(5): 940-944.
  • 9Hale J K. Theory of Functional Differential Equations [M]. New York: Springer, 1977.
  • 10Faria T, Magalhves L T. Restrictions on the Possible Flows of Scalar Retarded Functional Differential Equations in Neighborhoods of Singularities [J]. Journal Dynamics and Differential Equations, 1996, 8(1): 35-70.

共引文献5

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部