期刊文献+

基于压缩感知的图像自适应子空间追踪算法 被引量:2

Image adaptive subspace pursuit algorithm based on compressive sensing
下载PDF
导出
摘要 针对稀疏自适应匹配追踪(SAMP)算法中存在的运行速度慢、重建效果欠佳的问题,提出了一种新的自适应的子空间追踪算法(MASP)。采用SAMP算法中分段的思想,先对半减小预估稀疏度,再逐一增加,得到真实稀疏度后,再利用子空间追踪算法对原始信号进行重构。实验表明,相比于SAMP算法,该算法在相同观测数量的情况下,具有较快的运行时间和较好的重建效果,其中,在重构信噪比方面平均提高8.2%。 The Sparsity Adaptive Matching Pursuit(SAMP) algorithm has a large range of application in compressive sensing, but it runs slowly and the performance of recovery is not good. Compared with SAMP, a novel adaptive subspace pursuit algorithm is presented, which uses the idea of stage, evaluates the sparsity of the original signal step by step, and then with the information of sparsity, recovers the original signal using the subspace pursuit algorithm. The experiments demonstrate that the new algorithm not only improves the performance of the recovery, and saves the operating time compared with SAMP, but also solves the problem of unknown sparsity K in SP.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第3期220-223,共4页 Computer Engineering and Applications
关键词 压缩感知 信号重构 自适应 子空间追踪 compressive sensing signal recovery adaptive subspace pursuit
  • 相关文献

参考文献15

  • 1Candes E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians,2006.
  • 2Kutyniok G.Theory and applications of compressed sensing[J].GAMM-Mitteilungen,2013,36(1):79-101.
  • 3Qaisarm S,Bilalm R M,Iqbal W,et al.Compressive sensing:from theory to applications,a survey[J].Journal of Communications and Networks,2013,15(5):443-456.
  • 4Eldar Y C,Kutyniok G.Compressed sensing:theory and applications[M].New York:Cambridge University Press,2012.
  • 5焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:316
  • 6Tropp J A,Gilbert A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
  • 7Donoho D L,Tsaig Y,Drori I,et al.Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
  • 8Dai Wei,Milenkovic O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
  • 9Needell D,Tropp J A.Co Sa MP:iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26(3):301-321.
  • 10Do T T,Gan Lu,Nguyen N,et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//2008 42nd Asilomat Conference on Signals,Systems,and Computers,2008.

二级参考文献155

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2D L Donoho.Compressed sensing[J].IEEE Trans Info Theory,2006,52(4):1289-1306.
  • 3E J Candès,J Romberg,T Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Info Theory,2006,52(2):489-509.
  • 4E J Candès,T Tao.Near-optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425.
  • 5E J Candès,T Tao.Decoding by linear programming[J].IEEE Trans Info Theory,2005,51(12):4203-4215.
  • 6S S Chen,D L Donoho,M A.Saunders.Atomic decomposition by basis pursuit[J].SIAM Rev,2001,43(1):129-159.
  • 7S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.
  • 8J A Tropp.Greed is good:Algorithmic results for sparse approximation[J].IEEE Trans Info Theory,2004,50(10):2231-2242.
  • 9J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Info Theory,2007,53(12):4655-4666.
  • 10D L Donoho,Y Tsaig,I Drori,etc.Sparse solution of underdetermined linear equations by stagewise Orthogonal Matching Pursuit .2007,http://www-stat.stanford.edu/-donoho/Reports/2006/StOMP-20060403.pdf.

共引文献387

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部