期刊文献+

用户感知度模型分析及其在客户服务领域的应用 被引量:1

The User Perception Model Analysis and Its Application in the Field of Customer Service
下载PDF
导出
摘要 为提升国家电网公司客户服务中心主动服务质量,降低客户投诉风险,开展了用户感知度模型的分析研究工作。用户感知度模型分析,采用K-Means聚类算法进行聚类,通过分析、归纳用户对故障停电事件的感知度,将用户进行感知度划分。通过构建用户感知度模型,首次实现故障事件用户感知分类,为个性化主动服务提供决策依据。用户感知度模型对客户服务业务应用具有重要意义,基于感知度划分结果,可为用户提供个性化主动服务。 To improve the active service quality of State Grid Corporation Customer Service Center and reduce the risk of customer complaints, this paper studied the user perception model. The user perception model is analyzed and the K-Means clustering algorithm is used to classify the user level according to the perception degree on outage accidents. By building user perception model, a user perception classification of outage accidents is achieved for the first time, which provided decision basis for personalized active service. The user perception model for the customer service business application is of great significance. Based on the perception results, power enterprises can provide users with personalized service actively.
出处 《电力信息与通信技术》 2016年第1期33-37,共5页 Electric Power Information and Communication Technology
关键词 用户感知度模型 K-MEANS聚类算法 故障停电事件 客户服务 user perception model K-Means clustering algorithm outage accidents customer service
  • 相关文献

参考文献3

二级参考文献6

  • 1Treshansky A,McGraw R.An overview of clustering algorithms[A].Proceedings of SPIE,The International Society for Optical Engineering[C].2001(4367):41-51.
  • 2Clausi D A.K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation[J].Pattern Recognition,2002,35:1959-1972.
  • 3Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man,and Cybernetics _ Part B:Cybernetics,1998,28(3):301-315.
  • 4Ramze R M,Lelieveldt B P F,Reiber J H C.A new cluster validity indexes for the fuzzy c-mean[J].Pattern Recognition Letters,1998,19:237-246.
  • 5范九伦,裴继红,谢维信.聚类有效性函数:熵公式[J].模糊系统与数学,1998,12(3):68-74. 被引量:19
  • 6于剑,程乾生.模糊聚类方法中的最佳聚类数的搜索范围[J].中国科学(E辑),2002,32(2):274-280. 被引量:130

共引文献234

同被引文献8

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部