期刊文献+

微通道内R22制冷剂流动沸腾的压降特性 被引量:9

Pressure drop of flow boiling R22 in microchannels
下载PDF
导出
摘要 为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。 To investigate the influence of heat flux on pressure drop and study the fluctuations of pressure drop through visualization when heat flux was changed, with R22 refrigerant as the working fluids, the experiment through the aluminum-based rectangular micro-channel with different sizes of 2.0 mm×2.0 mm,2.0 mm×1.0 mm and 2.0 mm×0.6 mm, was investigated. The results show that the two-phase frictional pressure drop is the main part of the total pressure drop. With the increasing of heat flux, the two-phase frictional pressure drop increases, and when heat flux exceeds a certain value , the pressure drop increases slowly. When the mass flux is 253.2 kg/( m2·s) and heat flux increases from 4.5 kW/m2 to 18.1 kW/m2, the flow pattern changes from local dry to rewetting periodicity, and pressure drop shows the fluctuations during the periodic change.
出处 《化学工程》 CAS CSCD 北大核心 2016年第1期38-42,52,共6页 Chemical Engineering(China)
基金 国家自然科学基金资助项目(21276090)
关键词 微通道 流动沸腾 二相摩擦压降 热流密度 micro-channel flow boiling two-phase frictional pressure drop heat flux
  • 相关文献

参考文献11

  • 1KHAN M G, FARTAJ A. A review on microchannel heat exchangers and potential applications [ J ]. International Journal of Energy Research, 2011, 35 (7) :553-582.
  • 2RAVIGURMRAJANT T C. Impact of channel geometry on two-phase flow heat transfer characteristics of refrige- rants in microchannel heat exchangers [ J ]. Journal of Heat Transfer, 1998, 120(2) : 485-491.
  • 3HUO X, SHIFERAW D, KARAYIANNIS T G, et al. Two-phase pressure drop in small to mini diameter tubes [C]//6th Int Conf on Enhanced, Compact and Ultra Compact Heat Exchangers. Germany, 2007.
  • 4GARIMELLA S V. Advances in micro-scale thermal ma- nagement technologies for micro-electronics [ J ]. Micro- electronics Journal, 2006, 37 ( 11 ) : 1165-1185.
  • 5KAEW-ON J, SAKAMATAPAN K, WONGWISES S. Flow boiling pressure drop of R134a in the muhiport minichauuel heat exchangers [ J ]. Experimental Thermal and Fluid Science, 2010, 35(2) : 364-374.
  • 6COLLIER J G, THOME J R. Convective boiling and condensation [ M ]. New York : Oxford University Press, 1994 : 314-321.
  • 7GEIGER G E. Sudden contraction losses in single and two-phase flow [ D ]. Pittsburgh : University of Pittsburgh, 1964: 108.
  • 8林宗虎.气液两相流与沸腾传热[M].西安:西安交通大学出版社,2003.63-103.
  • 9胡丽琴,罗小平,廖寿学.矩形微细通道纳米流体沸腾流动阻力特性研究[J].中南大学学报(自然科学版),2014,45(7):2209-2216. 被引量:5
  • 10阎昌琪.气液两相流[M],哈尔滨:哈尔滨工程大学出版社,2007.

二级参考文献13

  • 1Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[C]// International Mechanical Engineering Congress and Exhibition. San Francisco, 1995: 12-17.
  • 2Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in microchannels[J]. Int J Heat and Mass Transfer, 2007, 50: 452-463.
  • 3Ribatski G, Wojtan L, Thome J R. An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels[J].Experimental Thermal and Fluid Science, 2006, 31 (1): 1-19.
  • 4Ho C J, Wei L C. An experimental investigation of forced convective cooling performance of a microchannel heat sink with A12O3-water nanofluid[J]. Applied Thermal Engineering, 2012, 30: 96-103.
  • 5Bowers M B, Mudawar I. High flux boiling in low flow rate, low pressure drop mini-Channel and microcharmel heat sink[J]. International Journal of Heat and Mass Transfer, 1994, 37(2): 321-332.
  • 6Chisholm D. Two phase flow in pipelines and heat exchangers[M]. London and New York: G. Godwin in association with Institution of Chemical Engineers, 1983: 1-304.
  • 7Pehlivan K, Hassan I, Vaillancourt M. Experimental study on two-phase flow and pressure drop in millimeter-size channels[J]. Applied Thermal Engineering, 2006, 26: 1506-1514.
  • 8Mishima K, Hibiki T. Some characteristics of air water two phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22: 703-712.
  • 9Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778.
  • 10Zhang W, Hibiki T, Mishima T. Correlations of two-phase frictional pressure drop and void fraction in mini-channel[J]. International Journal of Heat and Mass Transfer, 2010, 53: 453-465.

共引文献33

同被引文献37

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部