期刊文献+

基于乘积项互斥运算的FPRM转换方法

An Approach for FPRM Conversion Based on Exclusive Operation
下载PDF
导出
摘要 针对目前将逻辑函数从AND/OR形式转化成固定极性Reed-Muller(FPRM)过程中存在的不足,通过引入乘积项关于极性的位互斥运算,该文提出一种基于乘积项互斥运算的FPRM转换方法。该方法只需要对互斥运算后的乘积项进行展开,就可以得到对应极性下的FPRM的表示形式,省去了列表法中相同乘积项的搜索和删除过程。提出的算法用C语言编程实现,并用MCNC标准电路进行测试。实验结果表明所提算法在处理输入变量个数较大的电路时运算速度更快,并且算法对待处理电路的极性不敏感。 With the deficiency of the conversion algorithm for AND/OR forms to the Fixed Polarity Reed- Muller (FPRM) forms, an algorithm for the FPRM forms conversion from the disjointed products is proposed. By introducing the bit exclusive operator between two productions, no addi- tional steps for the same products searching and removing which are essential in the reported tabular algorithms is needed which makes the proposed algorithm can work fast and deal with large circuits. The proposed algorithm is implemented in C and tested under MCNC benchmarks. The experimental results show that the proposed algorithm can accomplish the polarity conversion for the circuits with large inputs, and the conversion speed for the different polarities is very close.
出处 《无线通信技术》 2015年第4期17-22,共6页 Wireless Communication Technology
基金 国家自然科学基金(61471211)
关键词 Reed—Muller(RM)逻辑 固定极性 乘积项互斥运算 极性转换 Reed - Muller logic FPRM exclusive operation polarity conversion
  • 相关文献

参考文献12

  • 1A1 Jassani B A, Urquhart N, Almaini A E A. Manipula- tion and optimisation techniques for Boolean logic [ J ]. lET Computers & Digital Techniques, 2010, 4(3) : 227 - 239.
  • 2MeKenzie L, Almaini A E A, Miller J F, et al. Optimi- zation of Reed - Muller logic funetlom [ J ]. International Journal of Electronics Theoretical and Experimental, 1993, 75(3): 451-466.
  • 3Lozano C C, Falkowski B J, Luba T. Fixed Polarity Line- ady Independent Expansions for the Representation ofQuaternary Functions [ J ]. Multlple - Valued Logic and Soft Computing, 2012, 19(4) : 307 -324.
  • 4Wang Xiang, Lu Ying, Zhang Yi, et al. Probabilistie modeling during power estimation for mixed polarity Reed - Muller logic circuits [ C ]. IEEE International Confer- enee on Green Computing and Communiea - tions, Bei- jing, China, 2013 : 1414 - 1418.
  • 5张会红,汪鹏君,俞海珍.基于新型极性转换技术的XNOR/OR电路面积优化[J].电子与信息学报,2012,34(7):1767-1772. 被引量:5
  • 6Jankovic D, Stankovie R S, Moraga C. Optimization of polynomial expressions by using the extended dual polari- ty [ J ]. Computers, IEEE Transactions on, 2009, 58 (12) : 1710 - 1725.
  • 7李辉,汪鹏君,王振海.混合极性列表技术及其在MPRM电路面积优化中的应用[J].计算机辅助设计与图形学学报,2011,23(3):527-533. 被引量:16
  • 8Wang L, Almani A E A. Fast conversion algorithm for very large Boolean functions [ J ]. Electronics letters,.
  • 9王玉花,王伦耀,夏银水.基于不相交项并行列表技术的FPRM实现[J].电子与信息学报,2014,36(9):2258-2264. 被引量:6
  • 10Yang M, Xu H, Almaini A E A. Optimization of mixed polarity Reed - Muller functions using genetic algorithm [ C ]//Computer Research and Development ( ICCRD), 2011 3rd International Conference on. IEEE, 2011, 3: 293 - 296.

二级参考文献35

  • 1万旭,唐金花,陈偕雄.基于K图的逻辑函数OC展开式在固定极性下的化简[J].浙江大学学报(理学版),2006,33(1):48-51. 被引量:3
  • 2Wang Pengjun,Chen Xiexiong.TABULAR TECHNIQUES FOR OR-COINCIDENCE LOGIC[J].Journal of Electronics(China),2006,23(2):269-273. 被引量:12
  • 3姚茂群,方平,陈偕雄.基于表格法的RM展开系数与或-符合展开系数的转换[J].浙江大学学报(理学版),2006,33(4):417-419. 被引量:3
  • 4Sasao T. Easily testable realizations for generalized Reed Muller expressions [J]. IEEE Transactions on Computers, 1997, 46(6); 709-716.
  • 5Dill K M, Perkowski M A. Baldwinian learning utilizing genetic and heuristic algorithms for logic synthesis andminimization of incompletely specified data with generalized Reed-Muller (AND-EXOR) forms [J]. Journal of Systems Arehiteeture, 2001, 47(6): 477-489.
  • 6Habib M K. A new approach to generate fixed-polarity Reed-Muller expansions for completely and incompletelyspecified functions [J]. International Journal of Electronics, 2002, 89(11): 845-876.
  • 7Voudouris D, Sampson M, Papakonstantinou G. Exact ESCT minimization for functions of up to six input variables [J]. Integration, the VLSI Journal, 2008, 41(1) : 87-105.
  • 8Habib M K. Efficient and fast algorithm to generate minimal Reed-Muller exclusive-OR expansions with mixed polarity forcompletely and incompletely specified functions and its computer implementation [J]. Computers &Electrical Engineering, 1993, 19(3):193-211.
  • 9Becker B, Drechsler R. Exact minimisation of Kronecker expressions for symmetric function [J]. Computers and Digital Techniques, 1996, 143(6): 349-354.
  • 10Cheng J, Chen X, Faraj K M, et al. Expansion of logical function in the OR-coincidence system and the transformbetween it and maxterm expansion [J]. lEE Proceedings Computers and Digital Techniques, 2003, 150(6): 397-402.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部