摘要
当前大多基于编码实现的(k,n)门限秘密分享方案在秘密重构时均假定只存在k个份额,忽略了秘密重构时可用份额数量多于门限值k的情况。而实验证明,多余的份额如果合理利用可以极大地降低秘密重构的运算量。在基于秘密分享的实用系统运行过程中,特别是网络数据传输或分布式存储系统中,可用份额数量大于门限值k的情况又是经常出现的。针对这一问题,该文提出了一种新的秘密重构方法,该方法可以有效利用秘密重构时所有的可用份额,且计算效率与当前主流方法相比有较大的提升。
Most (k,n) threshold secret sharing schemes based on coding theory ignores a case that the number of shares are more than the threshold value k when rebuilding the secret information. Such a case frequently occurs in practical systems based on secret sharing, especially the network data transmission or distributed storage systems Many experiments have proved that the amount of secret reconstruction computation can be reduced greatly if reasonably using the surplus shares. To solve this problem for secret sharing schemes based on coding theory, this paper proposes a new method of reconstructing the secret which can effectively use all available shares when reconstructing the secret, and computational efficiency has greatly improved compared with the mainstream approaches.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2016年第1期91-95,共5页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学基金(61501064)
四川省科技支撑计划(2016GZ0122)
四川省教育厅科技成果转化重大培育项目(15CZ0019)
关键词
编码
秘密重构
秘密分享
门限
coding
secret reconstruction
secret sharing scheme
threshold