期刊文献+

面向能耗优化的云渲染系统任务调度策略 被引量:1

A Task Scheduling Strategy With Energy Optimization for Cloud Rendering Systems
下载PDF
导出
摘要 针对云渲染系统中由于渲染节点与任务不匹配调度而带来的能耗浪费问题,提出一种通过任务调度方式来优化系统能耗的策略。为了形式化描述系统的整体能耗,综合考虑节点空闲能耗和任务运行能耗,建立渲染任务能耗模型;以降低系统总体能耗为优化目标,根据渲染任务之间无依赖性的特点,将任务调度序列拆分成子序列,利用模拟退火思想,通过优化子序列任务调度提高节点利用率、减少节点空闲能耗,以此降低系统全局任务的能耗;采用矩阵存储子序列任务的能耗,以空间换时间的方式降低策略的时间复杂度。实验结果表明:该策略在多渲染作业环境中能耗优化效果比先进先出算法提升了43.4%,比能耗感知的调度算法提升了6.7%,能够有效降低云渲染系统的总体能耗,同时具有良好的扩展性,使云渲染系统的能耗效率和整体性能得到提升。 A task scheduling strategy with optimized energy consumption for cloud rendering systems is proposed to solve the problem that the mismatching task scheduling on render nodes causes a great waste of energy consumption.A rendering task energy consumption model is presented to describe formally the overall energy consumption of a system and takes both the idle and the task running energy consumptions of each node into account.The optimization object is to reduce the overall energy consumption of the system,and the strategy divides the task scheduling sequence into subsequences based on the non-dependence characteristic among rendering tasks.The simulated annealing ideology is used to optimize the scheduling of the subsequence tasks,to improve the utilization ratio of the nodes and to reduce the idle energy consumption of nodes so that the energy consumption for the overall system is reduced.Moreover,the strategy adopts a way of space in time to reduce the time complexity by using a matrix to store the energy of subsequence tasks.Experimental results and comparisons with the FIFO algorithm and EMRSA(energy-aware MapReduce scheduling)algorithm in a multi jobs measurement show that the energy optimization performance of the proposed strategy has improved about 43.4%and 6.7%,respectively,that is,the proposed strategy effectively reducesthe overall energy consumption for cloud rendering systems.Moreover,the proposed strategy possesses better expansibility.It can be concluded that the proposed strategy can improve the energy efficiency and overall performance of cloud rendering systems.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第2期1-6,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61202041 91330117) 国家高技术研究发展计划资助项目(2012AA01A306 2014AA01A302)
关键词 能耗模型 任务调度 云渲染 energy consumption model task scheduling cloud rendering
  • 相关文献

参考文献13

  • 1BAHARON M R,SHI Q,LLEWELLYN-JONES D,et al.Secure rendering process in cloud computing[C]∥Proceedings of the 2013 11th Annual International Conference on Privacy,Security and Trust.Piscataway,NJ,USA:IEEE,2013:82-87.
  • 2罗亮,吴文峻,张飞.面向云计算数据中心的能耗建模方法[J].软件学报,2014,25(7):1371-1387. 被引量:128
  • 3LI Chao,ZHOU Ruijin,LI Tao.Enabling distributed generation powered sustainable high-performance data center[C]∥Proceedings of the 19th IEEE International Symposium on High Performance Computer Architecture.Piscataway,NJ,USA:IEEE,2013:35-46.
  • 4LI Keqin.Energy efficient scheduling of parallel tasks on multiprocessor computers[J].Journal of Supercomputing,2012,60(2):223-247.
  • 5LEE Y C,ZOMAYA A Y.Energy efficient utilization of resources in cloud computing system[J].Journal of Supercomputing,2012,60(2):268-280.
  • 6ZONG Ziliang,MANZANARES A,RUAN Xiaojun,et al.EAD and PEBD:two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous clusters[J].IEEE Transactions on Computers,2011,60(3):360-374.
  • 7MAHESHWARI N,NANSURI R,VARMA V.Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework[J].Future Generation Computer System,2012,28(1):119-127.
  • 8PIETRI I,SAKELLARIOU R.Energy-aware workflow scheduling using frequency scaling[C]∥Proceedings of the 2014 43rd International Conference on Parallel Processing Workshops.Piscataway,NJ,USA:IEEE,2014:104-113.
  • 9朱晓敏,贺川,王建江,江建清.异构计算系统中弹性节能调度策略研究[J].计算机学报,2012,35(6):1313-1326. 被引量:11
  • 10谭一鸣,曾国荪,王伟.随机任务在云计算平台中能耗的优化管理方法[J].软件学报,2012,23(2):266-278. 被引量:71

二级参考文献33

  • 1韩建军,李庆华,缪天鹏,Abbas A.Essa.实时多处理器系统中基于能量节约的动态调度算法[J].小型微型计算机系统,2006,27(4):691-694. 被引量:1
  • 2McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 3Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 4Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 5Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 6Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 7Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 8Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 9Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].
  • 10Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332.

共引文献201

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部