期刊文献+

压电俘能器涡激振动俘能的建模与实验研究 被引量:15

Modeling and Experimental Study of Piezoelectric Energy Harvester under Vortex-Induced Vibration
下载PDF
导出
摘要 针对微机电系统和传感器等低能耗电子产品的持续供能问题,提出了一种涡激振动式压电俘能器。该俘能器由压电悬臂梁和末端圆柱体组成,结构简单,可在较低水流流速下产生涡激共振,得到较大的能量输出。通过数学建模和实验测试的方法,研究了水流速度和外接电阻对压电俘能器振动和俘能的影响规律。实验结果表明:压电俘能器的振动频率随流速的增大而增大,振动幅值在涡激共振时最大,输出功率受流速和外接电阻两者影响,较小外接电阻适合较高流速,较大电阻适合较低流速,压电俘能器在涡激共振处可获得最大的能量输出,当外接电阻为0.5 MΩ、流速为0.41m/s时,实验测试得到了8.3μW的最大输出功率。数值分析结果与实验测试结果吻合较好,验证了数学模型的正确性。 A vortex-induced piezoelectric energy harvester(PEH)is proposed to meet the requirement of continuous energy supply for low energy-consumed electronic devices such as MEMS and sensors.The PEH is composed of a piezoelectric cantilever beam and a cylinder and has a simple mechanical structure.The PEH generates vortex-induced resonance at relatively low water velocities and obtains larger output powers.Effects of both the water velocity and the resistance on hydrodynamic response and energy harvesting ability of the PEH are investigated through mathematical modeling and experimental study.It is found that the vibration frequency increases as the velocity increases and the maximum vibration amplitude is found when the vortexinduced resonance appears.The Output power depends on both the water velocity and the resistance.More output power can be achieved through configurations of a smaller resistance with a higher velocity or a larger resistance with a lower velocity.The maximum output power is obtained with vortex-induced resonance.The maximum output power of 8.3μW is obtained in experimental study with 0.5 MΩand 0.41m/s.Furthermore,the results of numerical study are consistent with those of the experimental study well,and the validity of the mathematical model is verified.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第2期55-60,79,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学(50875057) 中央高校基本科研业务费专项资金资助项目(HIT.NSRIF.2014059 HIT.KISTP.201412)
关键词 水流 涡激振动 压电俘能器 俘能 water flow vortex-induced vibration piezoelectric energy harvester energy harvesting
  • 相关文献

参考文献19

  • 1袁江波,谢涛,单小彪,陈维山.压电俘能技术研究现状综述[J].振动与冲击,2009,28(10):36-42. 被引量:40
  • 2ERTURK A,INMAN D J.An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J].Smart Materials and Structures,2009,18(2):025009.
  • 3ERTURK A,INMAN D J.A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters[J].Journal of Vibration and Acoustics,2008,130(4):041002.
  • 4谢涛,袁江波,单小彪,陈维山.多悬臂梁压电振子频率分析及发电实验研究[J].西安交通大学学报,2010,44(2):98-101. 被引量:22
  • 5王红艳,谢涛,单小彪,袁江波.压电悬臂梁俘能器多模态俘能效果研究[J].西安交通大学学报,2010,44(6):114-119. 被引量:5
  • 6WANG Hongyan,TANG Lihua,SHAN Xiaobiao,et al.Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes[J].Smart Structures and Systems,2014,14(2):247-266.
  • 7SONG Rujun,SHAN Xiaobiao,LV Fengchi,et al.A study of vortex-induced energy harvesting from water using Pzt piezoelectric cantilever with cylindrical extension[J].Ceramics International,2015,41(S1):S768-S773.
  • 8SHAN Xiaobiao,SONG Rujun,LIU Bo,et al.Novel energy harvesting:a macro fiber composite piezoelectric energy harvester in the water vortex[J].Ceramics International,2015,41(S1):S763-S767.
  • 9AKAYDIN H D,ELVIN N,ANDREOPOULOS Y.Energy harvesting from highly unsteady fluid flows using piezoelectric materials[J].Journal of Intelligent Material Systems and Structures,2010,21(13):1263-1278.
  • 10AKAYDIN H D,ELVIN N,ANDREOPOULOS Y.Wake of a cylinder:aparadigm for energy harvesting with piezoelectric materials[J].Experiments in Fluids,2010,49(1):291-304.

二级参考文献14

  • 1胡洪平,高发荣,薛欢,胡元太.低频螺旋状压电俘能器结构性能分析[J].固体力学学报,2007,28(1):87-92. 被引量:9
  • 2陈子光,胡元太,杨嘉实.基于扭转模态的角振动压电俘能器研究[J].应用数学和力学,2007,28(6):693-698. 被引量:12
  • 3石胜君,陈维山,刘军考,赵学涛.一种基于纵弯夹心式换能器的直线超声电机[J].中国电机工程学报,2007,27(18):30-34. 被引量:24
  • 4JIANG Shunong, LI Xianfang, GUO, Shaohua, et al. Performance of a piezoelectricbimorph for scavenging vibration energy [J]. Smart Mater Struct, 2005, 14: 769-774.
  • 5JIANG Shunong, HU Yuantai. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester [J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54 (7) : 1463-1469.
  • 6HU Yuantai, XUE Huan, HU Hongping, et al. A piezoelectric power harvester with adjustable frequency through axial preloads[J].Smart Mater Struct, 2007, 16: 1961-1966.
  • 7HU Yuantai, XUE Huan, HU Ting, et al. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery [J]. IEEE Transactions on Ultrasonics, Ferroelectr, and Frequency Control, 2008, 55(1) : 148-160.
  • 8NG T H, LIAO W H. Sensitivity analysis and energy harvesting for self-powered piezoelectric sensor [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):785-797.
  • 9程光明,庞建志,唐可洪,杨志刚,曾平,阚君武.压电陶瓷发电能力测试系统的研制[J].吉林大学学报(工学版),2007,37(2):367-371. 被引量:42
  • 10阚君武,唐可洪,王淑云,杨志刚,贾杰,曾平.压电悬臂梁发电装置的建模与仿真分析[J].光学精密工程,2008,16(1):71-75. 被引量:89

共引文献62

同被引文献116

引证文献15

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部