摘要
针对人脸表情底层视觉特征无法表达高层语义的问题,提出一种基于语义属性的人脸表情识别新方法.该方法利用表情语义属性这一中间人脸表情特征表示方法可在个别类别样本很少的情况下共享情感特征信息的特点,通过统计CK+库中人脸表情AU(Action Unit)编码建立表情语义属性与表情类别矩阵,然后采用SIFT(Scale-Invariant Feature Transform)底层视觉特征训练获得语义属性标注器,最后利用贝叶斯模型识别人脸表情.在CK+和BU-3DFE两个公开人脸表情数据库上的实验结果表明,与其它底层特征提取方法相比,该方法能有效提取表情特征信息并且把8种表情类别的平均识别率提高了4%.
In order to reduce the semantic gap between the low-level visual features of face images and high-level semantic, this paper presents a new facial expression recognition method based on semantic attribute. Semantic attributes as an intermediate representation, which enables parameters sharing between classes, can interpret the expression of a face image when training data is scarce. Firstly, we set up the matrix of semantic attributes and facial expression tag through the statistics of Action Units in the CK + database. Then, the semantic attribute classifier is modeled by extracting the SIFT ( Scale-Invariant Feature Transform ) feature vectors for the static facial expression images. Finally,our model uses the semantic attribute classifier and the matrix for implementing the facial expression classi- fier. Experimental results show that the average recognition rate of the proposed method is increased by nearly 4% when it is compared with low-level visual features using databases of CK + and BU3DFE.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第2期332-336,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61272211)资助
江苏省六大人才高峰计划项目(DZXX-026)资助
江苏大学高级人才基金项目(10JDG065)资助
关键词
人脸表情识别
语义属性
人脸运动单元
底层视觉特征
facial expression recognition
semantic attribute
action unit
low-level visual feature