期刊文献+

基于语义属性的人脸表情识别新方法 被引量:2

Facial Expression Recognition Method Based on Semantic Attribute
下载PDF
导出
摘要 针对人脸表情底层视觉特征无法表达高层语义的问题,提出一种基于语义属性的人脸表情识别新方法.该方法利用表情语义属性这一中间人脸表情特征表示方法可在个别类别样本很少的情况下共享情感特征信息的特点,通过统计CK+库中人脸表情AU(Action Unit)编码建立表情语义属性与表情类别矩阵,然后采用SIFT(Scale-Invariant Feature Transform)底层视觉特征训练获得语义属性标注器,最后利用贝叶斯模型识别人脸表情.在CK+和BU-3DFE两个公开人脸表情数据库上的实验结果表明,与其它底层特征提取方法相比,该方法能有效提取表情特征信息并且把8种表情类别的平均识别率提高了4%. In order to reduce the semantic gap between the low-level visual features of face images and high-level semantic, this paper presents a new facial expression recognition method based on semantic attribute. Semantic attributes as an intermediate representation, which enables parameters sharing between classes, can interpret the expression of a face image when training data is scarce. Firstly, we set up the matrix of semantic attributes and facial expression tag through the statistics of Action Units in the CK + database. Then, the semantic attribute classifier is modeled by extracting the SIFT ( Scale-Invariant Feature Transform ) feature vectors for the static facial expression images. Finally,our model uses the semantic attribute classifier and the matrix for implementing the facial expression classi- fier. Experimental results show that the average recognition rate of the proposed method is increased by nearly 4% when it is compared with low-level visual features using databases of CK + and BU3DFE.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第2期332-336,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272211)资助 江苏省六大人才高峰计划项目(DZXX-026)资助 江苏大学高级人才基金项目(10JDG065)资助
关键词 人脸表情识别 语义属性 人脸运动单元 底层视觉特征 facial expression recognition semantic attribute action unit low-level visual feature
  • 相关文献

参考文献5

二级参考文献61

  • 1唐京海,张有为.基于FLD特征提取的SVM人脸表情识别方法[J].计算机工程与应用,2006,42(11):10-12. 被引量:11
  • 2朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 3徐正光,闫恒川,张利欣.基于表情识别的独立成分分析方法的研究[J].计算机工程,2006,32(24):183-185. 被引量:8
  • 4薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 5谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:8
  • 6Kim M, Lee H S, Jeong W P, et al. Determining color and blinking to support facial expression of a robot for conveying emotional intensity [ C ]// Proceedings of the 17th International Symposium on Robot and Human Interactive Communication. New Jersey: IEEE Computer Society, 2008: 219-224.
  • 7Lee K K, Xu Y. Real-time estimation of facial expression intensity [ C ]// Proceedings of the 2003 IEEE International Conference on Robotics and Automation. New York: IEEE lnc 2003 : 2567-2572.
  • 8Shishir Bashyal, Ganesh K Venayagamoorthy. Recognition of facial expressions using Gabor wavelets and learning vector quantization [ J ]. Engineering Applications of Artificial Intelligence, 2008,21 (7) : 1056-1064.
  • 9Geetha A, Ramalingam V, Palanivel S, et al. Facial expression recognition - a real time approach [ J ]. Expert Systems with Applications, 2009,36 (1) :303-308.
  • 10Abu Sayeed Md Sohail, Prabir Bhattacharya. Glassifying facial expressions using point-based analytic face model and Support Vector Machines [ C ]//Proceedings of the 2007 IEEE International Conference on Systems Man and Cybernetics. New York: IEEE Inc., 2007:1008-1013.

共引文献56

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部