期刊文献+

一种基因表达式程序设计的解码方法 被引量:1

A Decodingmethod for Gene Expression Programming
下载PDF
导出
摘要 基因表达式程序设计(GEP)的解码通常仰赖表达式树的建立和后序遍历技术,因而解码复杂度、性能自然成为GEP应用的要害所在.在分析GEP基因型与表现型关系的基础上,提出一种称谓RL-GEP的新型解码方法.新方法基于0目操作符概念、工程应用与系统设计的原则,采用"一次读码多样本解析"和直接对线性编码的基因型实施解码等方法来提高解码效率,算法模型简单修改即可得到一种新型的传统GEP"无树解码"方法,具有良好的扩展性.RL-GEP不仅与传统GEP具有相同的表达能力与表现型空间,而且易于理解、应用和扩展.从求解回归问题的实验看来,本方法和经典GEP有相似问题求解的能力,但效率更高. Decoding complexity and performance are of important concerns to applications of GEP ( Gene Expression Programming ), which generally decodes chromosomes based both on the construction of expression tree and post-order traversal. Taking into consider- ation the relationship between genotype and phenotype, a novel GEP decoding method, called RL-GEP, is proposed for interpreting genes in a straightforward manner in light of concept of 0-ary operator as well as principles of engineering applications and system de- signs. Genotype decoding methods such as 'An Analysis of Reading-Code Mutl-Sample' and 'Direct Linear Coding' are adopted to im- prove the efficiency of decoding. A novel traditional GEP 'Non-Expression Tree' method can be produced through a simple modifica- tion of arithmetic model, which is of better expansibility and universality. RL-GEP not only possesses the same expressiveness and phenotypic space as that of GEP, but also is easy to understand and use, and convenient to be extended. Experimental results demon- strate that RL-GEP has similar capability to solve regression problems as traditional GEP, but is more efficient than the latter.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第2期354-360,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61170199)资助 贵州省科技厅联合基金项目(20147440 20157727)资助 贵州省教育厅教学质量工程重点项目(2012426)资助
关键词 基因表达式程序设计 基因码 解码 符号回归 gene expression programming genetic code decoding symbolic regression
  • 相关文献

参考文献22

  • 1Ferreira C. Gene expression programming: a new adaptive algo- rithmfor solving problems [ J ]. Complex Systems, 2001,13 ( 2 ) : 87-129.
  • 2Ferreira C. Gene expression programming[ M ]. Portugal : Angorado Heroismo, 2002.
  • 3Azamathulla, Robert. Use of gene-expression programming to esti- mate manning' s roughness coefficient for high gradient streams [ J].Water Resources Management,2013,27 ( 3 ) :715-729.
  • 4Ozlem Terzi. Daily pan evaporation estimation using gene expres- sionprogramming and adaptive neural-based fuzzy inference system [ J ]. Neural Computing& Applications, 2013,23 ( 3 ) : 1035 -1044.
  • 5Su Ke, Kong Sheng-li. Product material combination imageMethod based on GEP[ C]. The 19th International Conference on Industrial Engineering and Engineering Management,2013:235-243.
  • 6Hosseini, Gandomi. Short-term load forecasting of power systems by gene expressionprogramming [ J ]. Neural Computing & Applic- tions,2012,21 (2) :377-389.
  • 7Nie Li, Gao Liang, Li Pei-gen, et al. A GEP-based reactive schedu- ling policies constructing approachfor dynamic flexible job shop scheduling problem with job releasedates [ J]. Journal of Intelligent Manufacturing,2013,24(4) :763-774.
  • 8Amir Hossein Gandomi, Amir HosseinAlavi, Ting T O, et al. Intel- ligent modeling and prediction of elastic modulusof concrete strength via gene expression programming [ C]. International Con- ference on Swarm Intelligence,2013:564-571.
  • 9Aminuddin Ab Ghani, H Md. Azamathulla. Development of GEP- based functional relationship for sedimenttransport in tropical rivers [J]. Neural Computing and Applications,2014,24 (2) :271-276.
  • 10Georgios Sermpinis, Anastasia Fountouli, Konstantinos Theofila- tos, et al. Gene expression programming and trading strategies[ C]. Artificial Intelligence Applications and Innovations (AIAI), 2013:497-505.

二级参考文献87

共引文献52

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部