期刊文献+

基于蒙特卡洛仿真和并行粒子群优化算法的携行备件优化 被引量:9

Optimization of Carried Spare Parts Based on Monte Carlo Simulation and Parallel Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为提高携行备件方案优化模型的准确性和求解的精确度,以遂行远海训练任务的舰艇编队为研究背景,针对优化模型的建立和求解提出了一系列改进措施。在传统优化模型的基础上,分析了虚警和串件拼修对备件的影响,建立了基于携行能力、备件成本、装备可用度、同型号装备群完好率等多约束条件的携行备件优化模型;利用粒子群优化(PSO)算法确定备件的优化配置,利用蒙特卡洛仿真法计算配置方案的保障效能;引入云格计算技术实现PSO算法的并行求解,从硬件性能上提高算法的全局寻优能力;将普通粒子转化为量子粒子实现解的多样化,减小了算法陷入局部最优的危险。案例分析证实了改进措施的可行性和有效性。 In order to enhance the veracity of model and the accuracy of solution for carried spare parts scheme, several improvements are raised under the background of naval fleet. An improved model is established, which is based on multi-constraints including carrying capacity, spare parts cost, availability of equipment, and serviceability rate of the same type equipment. Particle swarm optimization(PSO) is used to optimize the spare parts scheme, and Monte Carlo simulation is used to calculate its performance. PSO is concurrently computed on the designed gloud platform, which could improve global optimization a- bility by hardware parallel computation, and the ordinary panicles in PSO are transformed to the quantum particles in special conditions, which could avoid PSO trapping in local optimum. The example shows that these improvements are feasible and effective.
出处 《兵工学报》 EI CAS CSCD 北大核心 2016年第1期122-130,共9页 Acta Armamentarii
关键词 兵器科学与技术 携行备件 蒙特卡洛仿真 粒子群优化算法 方案优化 ordnance science and technology carried spare parts Monte Carlo simulation panicle swarm optimization algorithm scheme optimization
  • 相关文献

参考文献18

二级参考文献68

共引文献121

同被引文献125

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部