期刊文献+

基于差分进化算法的酿酒酵母分批补料培养在线自适应控制 被引量:1

Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm
原文传递
导出
摘要 酿酒酵母分批补料培养中,葡萄糖添加过量会导致乙醇大量积累,破坏细胞结构及功能,降低葡萄糖利用效率;葡萄糖添加不足会限制细胞生长。为解决这一矛盾,提出了一种基于差分进化算法的在线自适应控制策略,并利用计算机仿真方法对该策略、传统的间歇流加、分段恒速流加及PID控制策略的控制性能进行了研究和比较。结果表明,在该控制策略下,发酵液中的乙醇浓度能够被稳定地控制在1g/L的低水平,而细胞浓度却达到34.45g/L的高水平,比采用间歇流加、分段恒速流加及PID控制策略的批次分别提高了243%、18%和29%。由此可知,该自适应控制策略能够将葡萄糖流加速率控制在适宜水平,避免乙醇过量积累的同时保证细胞的快速增殖。 In fed-batch culture of Saccharomyces cerevisiae,excessive glucose addition leads to much ethanol accumulation,destroying structure and function of cell and decreasing glucose utilization efficiency,while insufficient glucose addition limits cell growth.To solve this problem,a self-adaptive control strategy based on differential evolution algorithm was proposed.In addition,performances of the proposed strategy,traditional strategy,were tested and compared using computer simulation.As a result,under the proposed control strategy,ethanol concentration could be maintained at the low level of 1.0g / L,while the biomass concentration could reach to the high level of 34.45 g / L,which was 243%,18% and 29% higher than those under intermittent feed,stepped constant feed and PID control strategy,respectively.In conclusion,the proposed self-adaptive control strategy was capable of controlling glucose feed rate at proper level,and thus ensured the rapid growth of yeast when repressing ethanol accumulation.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2016年第1期68-75,共8页 China Biotechnology
基金 国家自然科学基金资助项目(31301408)
关键词 酿酒酵母 乙醇积累 差分进化算法 系统辨识 自适应控制 Saccharomyces cerevisiae Ethanol accumulation Differential evolution algorithm System identification Adaptive control
  • 相关文献

参考文献19

  • 1王萍,王泽建,张嗣良.生理代谢参数RQ在指导发酵过程优化中的应用[J].中国生物工程杂志,2013,33(2):88-95. 被引量:11
  • 2Zigova J. Effect of RQ and pre-seed conditions on biomass and galactosyl transferase production during fed-batch culture of S. cerevisiae BT150. J Biotechnol, 2000, 80( 1 ) : 55-62.
  • 3Gibson B R, Lawrence S J, Leclaire J P R, et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev, 2007, 31 (5) : 535-569.
  • 4Tokuhiro K, fshida N, Nagamori E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol, 2009, 82 (5) : 883 -890.
  • 5Ida Y, Hirasawa T, Fumsawa C, et al. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol, biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol, 2013, 97( 11 ) : 4811-4819.
  • 6Oud B, Flores C L, Gancedo C, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact, 2012, 11:113.
  • 7Amdt M, Hitzmann B. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae. Biotechnol Prog, 2004, 20(1 ) : 377-383.
  • 8Paalme T, Kevvai K, Vilbastc A, ctal. Uptake and accumulation of B-group vitamers in Saccharomyces cerevlsiae in ethanol-star fed- batch culture. World J Microbiol Bioteehnol, 2014, 30 ( 9 ) : 2351-2359.
  • 9Hitit Z Y, Boyacioglu H, Ozyurt B, et al. Self-tuning GMV control of glucose concentration in fed-batch baker' s yeast production. Appl Biochem Biotechnol, 2014, 172 (8) :3761- 3775.
  • 10Rhee I L, Ritzka A, Scheper T. On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems. Biotechnol Bioproc Eng, 2004, 9 (3) : 156- 165.

二级参考文献22

  • 1Junker B H, Wang H Y. Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng, 2006, 95(2): 226-261.
  • 2Wang Y, Chu J, Zhuang Y, et al. Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv, 2009 , 27 (6) : 989-895.
  • 3Zhang S, Chu J, Zhuang Y. A multi-scale study of industrial fermentation processes and their optimization. Adv Biochem Eng Biotechnol, 2004, 87: 97-150.
  • 4Zeng A P, Deckwer W D. Bioreaction techniques under microaerobic conditions : from molecular to pilot plant reactors. Chemical Engineering Science, 1996, 51 (10) : 2305-2314.
  • 5Franzen C J. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast, 2003, 20(2): 117-132.
  • 6Payot T, Chemaly Z, Fick M. Lactic acid production by Bacillus coagulans kinetic studies and optimization of culture medium for batch and continuous fermentation. Engyme Microbiology Technology, 1999, 24(2): 191-199.
  • 7Anastassiadis S, Rehm H J. Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors. Appl Microbiol Biotechnol, 2006,73 (3) :541- 548.
  • 8Shin H Y, Lee J Y, Choi H S, et al. Production of eephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35. J Microbiol, 49 (5) :753-758.
  • 9Iudina O D, Levitov M M, Buneeva T A. Respiration of Penicillium chrysogenum 194 during fermentation of penicillin. Mikrobiologiia, 1969, 38 (4) :629-633.
  • 10Wang Z J, Zhang ~ M, Wang H Y, et al. Improved vitamin BI2 production by stepwise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresource Technology, 2010, 101 (8) : 2845-2852.

共引文献10

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部