期刊文献+

基于DSP虹膜识别防疲劳驾驶报警系统的研究 被引量:6

Research on anti fatigue driving alarm system by iris recognition based on DSP
下载PDF
导出
摘要 防止疲劳驾驶以主观监测和客观检测为主,但其在可靠性、成本、检测方法上存在不足,为此,设计了一套基于DSP虹膜识别防止疲劳驾驶报警系统。借鉴国内外学者的研究,遵循实时性、准确性、简洁性及经济性的设计原则,以虹膜识别算法为依据,DSP微处理器控制技术为基础进行了开发,该报警系统可在不干扰驾驶员的情况下,识别驾驶员身份,记录驾驶时间,识别疲劳驾驶并报警。测试结果表明:系统结构简单,实现了模块化。虹膜识别模块、计时模块基本满足了准确性和实时性的要求。 To prevent the fatigue driving is given priority to subjective monitoring and objective detection,but the shortcomings existed on reliability,cost and detection method. Therefore,a set of anti fatigue driving alarm system by iris recognition based on DSP was designed. By referencing the research of scholars both at home and abroad,following the design principles of real- time,accuracy,simplicity and economy,and taking the algorithm of iris recognition as basis,the development was conducted based on the control technology of DSP microprocessor. On condition that the driver is not disturbed,the alarm system can identify the driver,record the driving time,identify fatigue driving and alarm. The test results showed that the structure of system was simple and realized the modularity. The modules of iris recognition and timekeeping satisfied the requirements of accuracy and real- time basically.
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2016年第1期127-131,共5页 Journal of Safety Science and Technology
基金 贵州大学研究生创新基金项目(研理工2014022) 贵阳市科技计划项目(筑科合同(2011101)1-27号)
关键词 DSP 疲劳驾驶 虹膜识别 主观监测 DSP fatigue driving iris recognition subjective monitoring
  • 相关文献

参考文献10

二级参考文献33

  • 1刘志强,汪旸.基于机器视觉的驾驶疲劳检测方法[J].中国制造业信息化(学术版),2006,35(2):63-66. 被引量:7
  • 2韩相军,关永,王雪立.基于DSP的疲劳驾驶实时监测系统研究[J].计算机技术与发展,2006,16(2):47-49. 被引量:11
  • 3胡谦,赵丹阳.单片机应用系统抗干扰技术[J].黑龙江科技信息,2007(08S):52-52. 被引量:2
  • 4TEXAS INSRUMENTS. TMS320DM642 video/imaging fixed point digital signal processor[ M]. [ S. l. ]:Texas lnsmments Incorporated, 2003 : 1 - 6.
  • 5DAVID F, RICHARD D. PERCLOS: A valid psycho- physlological measure of alertness as assessed by psycho- motor vigilance [ EB/OL ]. Washington, DC : Federal Motor Carrier Safety Administration, 1998 [ 2010 - 03 - 02 ]. http://www. fmcsa.dot.gov.
  • 6ZHANG Lei, STAN Z L. QU Zhi-yi, et al. Boosting lo- cal feature based classifiers for face recognition [ C ]// 2004 Conference on Computer Vision and Pattern Recog- nition Workshop ( CVPRW '04 ). Washington, D. C : [s.n. ], 2004: 84.
  • 7张伦.MB-LBP特征在视觉目标检测和分类中的应用[D].北京:中国科学院研究生院,2005.
  • 8OJALA T, PIETIKINEN M, HARWOOD D. A compar- ative study of texture measures with classfication based on feature distribution[ J]. Pattern Recognition, 1996, 29:51 -59.
  • 9FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[ J]. Journal of Computer and System Science, 1997,55 : 119 - 139.
  • 10PHILIPS. SAA7113H 9-bit video input processor [ EB/ OL]. [S. l.]: Philips, 2000 [2010-03 -01]. ht- tp ://www. semiconductors. philips. com.

共引文献47

同被引文献39

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部