摘要
本文首先介绍了第二类Holling型反应扩散方程组中各字母的含义;然后是对它满足Neumann边值条件的解的分岔讨论,主要包括Turing分岔和Hopf分岔;最后利用中心流形原理和正规化方法讨论反应扩散方程组解的Hopf分岔和分岔周期解的稳定性.
In this paper,we firstly introduce the letter of the bifurcation analysis of a reaction-diffusion model with Holling type II,subjected to Neumann boundary condition. It includes Turing bifurcations and Hopf bifurcations. At the same time,we use the center manifold and normal form method for determing the direction of Hopf bifurcation and stability of the bifurcating periodic solutions for the reaction-diffusion.
出处
《天津理工大学学报》
2016年第1期61-64,共4页
Journal of Tianjin University of Technology
基金
国家自然科学基金(11071185
11471240)