期刊文献+

对第二类Holling型反应扩散方程组解的分岔讨论 被引量:1

Bifurcation analysis of the Holling type Ⅱwith diffusion
下载PDF
导出
摘要 本文首先介绍了第二类Holling型反应扩散方程组中各字母的含义;然后是对它满足Neumann边值条件的解的分岔讨论,主要包括Turing分岔和Hopf分岔;最后利用中心流形原理和正规化方法讨论反应扩散方程组解的Hopf分岔和分岔周期解的稳定性. In this paper,we firstly introduce the letter of the bifurcation analysis of a reaction-diffusion model with Holling type II,subjected to Neumann boundary condition. It includes Turing bifurcations and Hopf bifurcations. At the same time,we use the center manifold and normal form method for determing the direction of Hopf bifurcation and stability of the bifurcating periodic solutions for the reaction-diffusion.
作者 赵小妮
机构地区 天津大学理学院
出处 《天津理工大学学报》 2016年第1期61-64,共4页 Journal of Tianjin University of Technology
基金 国家自然科学基金(11071185 11471240)
关键词 Turing分岔 HOPF分岔 分岔解的稳定性 Turing bifurcations Hopf bifurcation steady state bifurcation
  • 相关文献

参考文献8

  • 1Holling C S.Some characteristics of simple types of preda- tion and parasitism [J].Canadian Entomologist, 1959, 91 (7) : 385-398.
  • 2Kazarinow N, Driessche P D.A model predator-prey systems with functional response [J ].Mathematical Bioscienees, 1978, 39(1):125-134.
  • 3Casal A,Eilbeck J C,Gome Z J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion [ J ] .Differential Integral Equations, 1994,7 (2) : 411-439.
  • 4Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge [ J ] .Journal Differential Equation, 2006,231 ( 2 ) : 534-550.
  • 5Henry D.Geometrie theory of smilinear parabolic equation [ M ] .New York:Springer Verlag, 1981.
  • 6Du L L,Wan G M. Hopf bifurcation analysis in the 1 -D Lengyel-Epstein reaction-diffusion model [J]. Journal Mathematical Analysis and Application , 2010 , 366 (2): 473-485.
  • 7Hart W, Bao Z H. Hopf bifurcation analysis of a reaction- diffusion Sel'kov system [J ] .Journal Mathematical Analysis and Application,2009,365(2) : 633-641.
  • 8Yi F,Wei J,Shi J. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system [J].Jour- nal Differential Equation, 2009,246 (5) : 1944-1977.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部