期刊文献+

考虑J_2项摄动的空间共振轨道特性分析

Studying Spacial Resonance Orbit with J_2 Perturbation Considered
下载PDF
导出
摘要 共振轨道是建立在新型坐标系下的非开普勒轨道,应用于空间机动轨道的设计,具有节省能量的优势。针对地球形状摄动J_2项对共振轨道特性的影响分析问题,建立了一种新的考虑J_2项摄动影响的共振轨道数学模型。通过与传统受J_2项摄动影响的共振轨道数学模型的仿真对比分析可以看出,新的数学模型虽然形式较为复杂,但却能够揭示不同阶段J_2项摄动使系统产生偏差的原因,比传统模型更为精确,因此更适用于工程实际中分析J_2项摄动对共振轨道特性的影响。 The spacial resonance orbit is a non-Keplerian orbit created in a new coordinate system. It can be ap- plied to the design of the spaeial maneuvering orbit and has the advantage of saving fuel. For the spaeial resonance orbit affected by J2 perturbation, a new perturbed model, applied to random inherent frequency, is developed in this paper. And then, the J2 perturbation effect on the resonance orbit characteristic is analyzed with simulation. Compared with thesimulation of the traditional perturbed model, it shows that although the new perturbed model has a more complex form, it can explain the source of differences in different stages. So it is more accurate and can ana- lyze the J2 perturbation effect on the resonance orbit characteristic, better.
作者 吝琳 方群
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第1期147-152,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11272255)资助
关键词 非开普勒运动 共振轨道 J2项摄动 acceleration, computer simulation, design, diffential equations, fuels, functions, maneuverability,mathematical models, mathematical transformations, matrix algebra, natural frequencies, orbits poly-nomicals, resonance, spacecraft, vectors, vibrations (mechanical) J2 perturbation, non-Keplerian,resonance orbit
  • 相关文献

参考文献14

  • 1陈记争.航天器非开普勒轨道研究[D] .西安:西北工业大学,2010.
  • 2陈记争,袁建平,朱战霞.航天器共振轨道研究[J].宇航学报,2010,31(1):82-86. 被引量:4
  • 3史格非.航天器共振轨道机理及设计方法研究[D].西安:西北工业大学,2014.
  • 4史格非,方群,殷毅.一般形式的共振轨道研究[J].力学与实践,2014,36(5):617-621. 被引量:1
  • 5史格非,方群.航天器共振轨道特性研究[J].飞行力学,2014,32(4):334-337. 被引量:1
  • 6Fang Qun, Shi Gefei, Yin Yi. Spacecraft's Resonance Orbit Design and Application Analysis[ C]//65^th International Astronauti- cal Congress, Toronto, Canada, 2014.
  • 7Chen Shiyu, Lin Lin, Fang Qun. Study on Resonance Orbit Considering Air Drag[ C]//14^th International Space Conference of Pacific-Basin Societies, Xi'an, China, 2014.
  • 8Daniel Condurache, Vladimir Martinusi. A Complete Closed Form Vectorial Solution to the Kepler Problem [ J ]. Meccanica, 2007, 42 : 465-476.
  • 9Maria Dina Vivarelli. The KS-Transformation Revisited [ J ]. Meccanica, 1994, 29 : 15-26.
  • 10Nemes F, Mik'oczi B. Perturbed Kepler Problem in General Relativity with Quaternions [ J ]. International Journal of Modern Physics D, 2013, 22(8) : 1-22.

二级参考文献22

  • 1Shengping Gong Junfeng Li Hexi Baoyin Yunfeng Gao.Formation reconfiguration in restricted three body problem[J].Acta Mechanica Sinica,2007,23(3):321-328. 被引量:7
  • 2肖峰.人造地球卫星轨道摄动理论[M].长沙:国防科技大学出版社,1997..
  • 3Azimov D M, Bishop R H. Extremal rocket motion with maximum thrust in a linear central field[ J]. Journal of Spacecraft and Rockets, 2001, 38(5) : 765 - 776.
  • 4Markopoulos N. Analytically exact non-Keplefian motion for orbit transfers[ R]. AIAA Paper 94 - 3758.
  • 5Fukushima T. New two-body regularization [ J ]. The Astronomical Journal, 2007, 133 : 1 - 10.
  • 6Fukushima T. Numerical comparison of two-body regularizations [ J ]. The Astronomical Journal, 2007, 133:2815 - 2824.
  • 7Poleshchickov S M. Regularization of motion equations with L-Transformation and numerical integration of the regular equations[J].Celestial Mechanics and Dynamical Astronomy, 2003, 85:341 -393.
  • 8Waldvogel J. Order and chaos in satellite encounters[ C]//Steves B A, ed. Chaotic Worlds: from Order to disorder in Gravitational N-Body Dynamical Systems, 2006: 231- 251.
  • 9Alfriend K T, Schaub H, Dynamics and control of spacecraft formations : Challenges and some solutions [A]. Battin R H. Astrodynamics Symposium [C]. Galveston, T X, Mar 19 -21 2000, Paper No. AAS 00-259.
  • 10Alfriend K T. Schaub H, Gim Dong Woo. Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies [A]. Annual AAS Rocky Mountain Guidance and Control Conference [C]. Breckenridge, CO, USA, Feb 2-Feb 6 2000, Paper No. AAS 00- 012.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部