期刊文献+

容量约束的自组织增量联想记忆模型 被引量:1

Self-Organizing Incremental Associative Memory Model under Capacity Constraint
下载PDF
导出
摘要 自组织联想记忆神经网络因其并行、容错及自我学习等优点而得到广泛应用,但现有主流模型在增量学习较大规模样本时,网络节点数可能无限增长,从而给实际应用带来不可承受的内存及计算开销。针对该问题,提出了一种容量约束的自组织增量联想记忆模型。以网络节点数为先决控制参数,结合设计新的节点间自竞争学习策略,新模型可满足大规模样本的增量式学习需求,并能以较低的计算容量取得较高的联想记忆性能。理论分析表明了新模型的正确性与有效性,实验分析同时显示了新模型可有效控制计算容量,提升增量样本学习效率,并获得较高的联想记忆性能,从而能更好地满足现实应用需求。 Due to the advantages of self-organizing neural network like parallelism, fault freedom and self-learning,it has been widely used all over the place. However, in traditional associative memory neural networks, the number of network nodes will unlimitedly grow when they incrementally learning more and more samples, which inevitably leads to an unaffordable overhead of computation and storage. To solve this problem, this paper proposes a self-organizing incremental associative memory model under capacity constraint. By limiting the number of network nodes and introducing a self- competition strategy between network nodes, new model is capable of incrementally learning large-scale samples and can gain equivalent associative memory performance only requiring lower computing demand.The reasonability of model is proved by theoretical analysis. Moreover, the experimental results demonstrate that new model can effectively control computing consumption, improve the efficiency of incrementally learning new samples, and obtain comparative associative memory performance, which may preferably satisfy the demands of many practical applications.
出处 《计算机科学与探索》 CSCD 北大核心 2016年第1期130-141,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 江苏省自然科学基金~~
关键词 联想记忆 容量约束 增量学习 自组织 神经网络 associative memory capacity constraint incremental learning self-organizing neural network
  • 相关文献

参考文献24

  • 1Michel A N, Fan-ell J A. Associative memories via artificial neural networks[J]. IEEE Control Systems Magazine, 1990, 10(3): 6-17.
  • 2Haykin S. Neural networks[M]. Beijing: Tsinghua University Press, 2001.
  • 3吴小俊,张媛媛,王士同,於东军,郑宇杰,杨静宇.改进的模糊神经网络及其在人脸识别中的应用[J].微纳电子技术,2007,44(7):465-469. 被引量:2
  • 4Ozturk M C, Principe J C. An associative memory readout for ESNs with applications to dynamical pattern recognition[J]. Neural Networks, 2007, 20(3): 377-390.
  • 5Itoh K, Miwa H, Takanobu H, et al. Application of neural network to humanoid robots-development of co-associative memory model[J]. Neural Networks, 2005, 18(5): 666-673.
  • 6Hopfield J J. Neural networks and physical systems with emer- gent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554-2558.
  • 7Azuela J H S. A bidirectional hetero-associative memory for true-color patterns[J]. Neural Processing Letters, 2008, 28(3): 131-153.
  • 8周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:246
  • 9Namarvar H H, Liaw J S, Berger T W. A new dynamic synapse neural network for speech recognition[CJ//Proceedings of the 2001 International Joint Conference on Neural Networks, Washington, USA, Jul 15-19, 2001. Piscataway, USA: IEEE, 2001, 4: 2985-2990.
  • 10Chung F, Lee T. On fuzzy associative memory with multiple- rule storage capacity[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 375-384.

二级参考文献78

  • 1王冰,职秦川,张仲选,耿国华,周明全.灰度图像质心快速算法[J].计算机辅助设计与图形学学报,2004,16(10):1360-1365. 被引量:32
  • 2吴小俊,杨静宇,王士同,Josef Kittler,陆介平.改进的统计不相关最优鉴别矢量集[J].电子与信息学报,2005,27(1):47-50. 被引量:8
  • 3桑农,张荣,张天序.一类改进的最小距离分类器的增量学习算法[J].模式识别与人工智能,2007,20(3):358-364. 被引量:9
  • 4Yuan Fei-niu.A fast accumulative motion orientation model based on integral image for video smoke detection[J].Pattern Recognition Letters,2008,29(7):925-932.
  • 5Ugur Toreyin,Yigithan Dedeoglu,and Ugur Gudukbay,et al..Computer vision based method for real-time fire and flame detection[J].Pattern Recognition Letters,2006,27(1):49-58.
  • 6Gonzalez R,Aquino A,and Romero R,et al..Wavelet-based smoke detection in outdoor video sequences[C].The 53rd IEEE International Midwest Symposium on Circuits and Systems,Seattle,USA,1-4 August,2010:383-387.
  • 7Kim Dong-keun and Wang Yuan-fang.Smoke detection in video[C].World Congress on Computer Science and Information Engineering,Los Angeles,USA,March 31-April 2,2009,5:759-763.
  • 8Chen Thou-ho (Chao-ho),Yin Yen-hui,and Huang Shi-feng,et al..The smoke detection for early fire-alarming system base on video processing[C].IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing,Pasadena,California,USA,December 18-20,2006:427-430.
  • 9Yang Jing,Chen Feng,and Zhang Wei-dong.Visual-based smoke detection using support vector machine[C].Fourth International Conference on Natural Computation,Jinan,China,August 25-27,2008,4:301-305.
  • 10Wei Zheng,Wang Xin-gang,and An Wen-chuan.Targettracking based early fire smoke detection in video[C].International Conference on Image and Graphics,Xi'an,China,September 21-24,2009:172-176.

共引文献293

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部