期刊文献+

基于HMM与遗传神经网络的改进语音识别系统 被引量:4

Improved Speech Recognition System Based on HMM and Genetic Neural Networks
下载PDF
导出
摘要 为了解决语音信号中帧与帧之间的重叠,提高语音信号的自适应能力,本文提出基于隐马尔可夫(HMM)与遗传算法神经网络改进的语音识别系统.该改进方法主要利用小波神经网络对Mel频率倒谱系数(MFCC)进行训练,然后利用HMM对语音信号进行时序建模,计算出语音对HMM的输出概率的评分,结果作为遗传神经网络的输入,即得语音的分类识别信息.实验结果表明,改进的语音识别系统比单纯的HMM有更好的噪声鲁棒性,提高了语音识别系统的性能. In order to solve the overlap between frames and improve the self-adaptability of the speech signal, an improved speech recognition system based on hidden Markov model(HMM) and genetic algorithm neural network is proposed in this paper. The major improvement is the adoption of wavelet neural networks in the training of Mel frequency cepstral coefficients(MFCC). And by using HMM models time series of speech signal, the speech's score on the output probability of HMM is calculated. The results will be used as the input of genetic neural network, the information of the speech recognition and classification can then be obtained. The experimental results show that, the improved system has better noise robustness than the pure HMM and the performance of the speech recognition system is also improved
作者 吴延占
出处 《计算机系统应用》 2016年第1期204-208,共5页 Computer Systems & Applications
关键词 隐马尔可夫模型 神经网络 语音识别 遗传算法 hidden markov model neural network speech recognition genetic algorithm
  • 相关文献

参考文献13

二级参考文献42

共引文献41

同被引文献56

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部