期刊文献+

基于分布式集群环境的图聚类信息高效处理方案 被引量:1

EFFICIENT GRAPH CLUSTERING INFORMATION PROCESSING SCHEME BASED ON DISTRIBUTED CLUSTER ENVIRONMENT
下载PDF
导出
摘要 针对人工智能领域图聚类数据分析与处理能力无法适应于日益复杂的分布式集群环境等问题,设计出一种基于并行计算的高效率图聚类信息处理方案。通过对Minhash算法以MapReduce架构理论进行改进,使其实现对数据的并行化分析处理,以确保其能够在日益复杂的分布式集群计算环境下高效处理图聚类数据信息。通过相关实验表明,该方案不仅可行,而且能够对图聚类数据信息进行快速稀疏化处理,具有一定的高效性。 In order to solve the problem that the analysing and processing abilities of graph clustering data in artificial intelligence field can' t adapt to the increasingly complex distributed clnster environment, we design a parallel computing-based efficient graph clustering information processing scheme. In this scheme, the Minhash algorithm is improved based on MapReduce framework theory to enable it to achieve the paralleled analyses and processing on the data, so as to guarantee it being abIe to efficiently process graph clustering data information in increasingly complex distributed cluster environment. It is indicated by related experiment that this scheme is more than feasible, it can also quickly carry out sparseness processing on graph clustering data information, and has certain high efficiency.
出处 《计算机应用与软件》 CSCD 2016年第2期217-222,共6页 Computer Applications and Software
基金 国家自然科学基金创新研究群体科学基金项目(51021004)
关键词 人工智能 数据挖掘MapReduce 图聚类Minhash Artificial intelligence Data mining MapReduce Graph clustering Minhash
  • 相关文献

参考文献19

  • 1Lin J, Schataz M. Design patterns for efficient graph algorithms in ma- preduce [ C ]//MLG,2010,22(3 ) :78 - 85.
  • 2Lv Qin, Josephson W,Wang Zhe, et al. Multi-probe LSH : efficient inde- xing for high-dimensional similarity search [ C ]//Pm of the 33 Int Conf on Very Large Data Bases ( VLDB' 07 ). Vienna Austria: VLDB Endowment ,2007,10 (2) :950 - 961.
  • 3Yang H C, Dasdan A, Hsiao R L, et al. Map-Reduce-Merge: Simplified relational data processing [ C ]//Proc of ACM SIGMOD International Conference on Management of Data, New York: ACM, 2007:1029 -1040.
  • 4Vrba Z, Halvorsen P, Griwodz C, et al. Kahn process networks are a flexible alternative to mapreduce [ C]//Pine of IEEE International Con- ference on High Performance Computing and Communications, Piscat- away : IEEE ,2009 : 154 - 162.
  • 5Sandholm T, Lai K. MapReduce optimization using regulated dynamic priofitization[ J ]. Performance Evaluation Review, 2009,37 ( 1 ) : 299 -310.
  • 6Liu Q,Todman T, Luk W, et al. Combining optimizations in automated low power design[ C]//Proc of Design, Automation&Test in Europe Conference&Exhibition, Piscataway: IEEE ,2010 : 1791 - 1796.
  • 7Chen Quan, Zhang Daqiang, Gao Mingi, et al. SAMR: A self-adaptive mapreduce scheduling algorithm in heterogeneous environment [ C ]// Proc of IEEE International Conference on Computer and Information Technology, Los Alamitos : IEEE computer society ,2010:2736 - 2743.
  • 8Nicolas Garcia-Pedrajas, Aida de Haro-Garcia. Scaling up data mining algorithms:Review and taxonomy [ J ]. Process in Artificial Intelligence, 2012,1 ( 1 ) :71 - 87.
  • 9Satu Elisa Schaeffer. Scalable uniform graph sampling by local compu- tation [ J ]. SIAM Journal on" Scientific Computing,2010,32 (5) :2937 -2963.
  • 10温菊屏,钟勇.图聚类的算法及其在社会关系网络中的应用[J].计算机应用与软件,2012,29(2):161-163. 被引量:16

二级参考文献51

  • 1余正涛,樊孝忠,郭剑毅,耿增民.基于潜在语义分析的汉语问答系统答案提取[J].计算机学报,2006,29(10):1889-1893. 被引量:44
  • 2石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 3马静谨,李强.基于瓦片数据的DEM构建与显示[J].测绘工程,2007,16(2):27-29. 被引量:3
  • 4Venu Satuluri, Srinivasan Parthasarathy. Scalable graph clustering using stochastic flows : applications to community discovery [ C ]//KDD, Par- is, France ,2009:737 - 746.
  • 5Dongen S V. Graph Clustering by Flow Simulatiion [ D ]. Utrecht: Uni- versity of Utrecht,2000.
  • 6Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) :888 -905.
  • 7Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, et al. SCAN: a structural clustering algorithm for networks [ C]//KDD. San Jose, CA, USA, 2007 : 824 - 833.
  • 8Scott J. Social Network Analysis:A Handbook [M ]. 2nd ed. London: Sage Publications Ltd,2000.
  • 9Michelle Girvan,Newman M E J. Community structure in social and bi- ological networks [ J ]. PNAS. 2002,99 ( 12 ) :7821 - 7826.
  • 10Newman M E J. Fast algorithm for detecting community structure in net- works[J], phys REVE,2004,69(6) :066133.

共引文献110

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部