期刊文献+

预计算类ECC标量乘算法高速存储控制电路设计

DESIGNING HIGH-SPEED STORAGE CONTROL CIRCUIT FOR ECC SCALAR MULTIPLICATION ALGORITHM WITH PRE-COMPUTATION
下载PDF
导出
摘要 为提升椭圆曲线密码体制中最耗时的标量乘运算的计算速度,解决采用预计算的快速实现算法中数据存储问题,提取分析了NAF窗口算法、固定基窗口算法、固定基comb算法的存储需求和共性特征,设计了适合ECC处理器的统一寻址电路和向量结构的高效访存电路,有效支持目前具有预计算存储需求的典型算法,并使得访存效率和资源利用率大幅提升。在少量资源消耗下,与传统存储结构相比,访问存储性能提升达75%到95%。 In order to improve computation speed of most time-consuming scalar multiplication operation in ECC and to solve data storage problem of fast implementation algorithm using pre-computation, we extract the common features and analyse the storage requirements in regard to NAF window algorithm, fixed base windowalgorithm, fixed base comb algorithm, design efficient access and storage circuit suitable for unified addressing and vector structure of ECC processor, which effectively supports for current typical algorithms with pre-computation storage needs, and significantly enhances the efficiency of access and storage and the resource utilisation. While the resource consumption is few, its performance of access and storage improves up to the range of 75% to 95% compared with traditional storage structure.
出处 《计算机应用与软件》 CSCD 2016年第2期322-325,共4页 Computer Applications and Software
关键词 椭圆曲线密码 标量乘 预计算 存储结构 Elliptic Curve cryptography (ECC) Scalar multiplication Pre-computation Storage structure
  • 相关文献

参考文献9

二级参考文献50

  • 1陶然,陈丽燕.椭圆曲线密码体制中点乘的快速算法[J].北京理工大学学报,2005,25(8):701-704. 被引量:1
  • 2刘双根,李萍,胡予濮.椭圆曲线密码中标量乘算法的改进方案[J].计算机工程,2006,32(17):28-29. 被引量:7
  • 3刘淳,张凤元,张其善.基于智能卡的素数域椭圆曲线密码的快速实现[J].计算机工程与应用,2006,42(27):137-139. 被引量:4
  • 4MILLER V S. Use of elliptic curves in cryptography[C].CRYPTO'85, 1986:417-426.
  • 5KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of computation, 1987,48(4):203-209.
  • 6HANKERSON D.椭圆曲线密码学引导译[M].张焕国,译.北京:电子工业出版社,2005.
  • 7IZU T, TAKAGI T. A fast parallel EC multiplication resistant against side channel attacks[R].CACR University of Waterloo.2002.
  • 8Noroozi E, Kadivar J, Shafiee S H. Energy Analysis for Wireless Sensor Networks[C] //Proc. of ICMEE’10. Copenhagen, Denmark: IEEE Press, 2010: 382-386.
  • 9Okeya K, Schmidt-Samoa K, Spahn C, et al. Signed Binary Repre- sentations Revisited[C] //Proc. of Crypto’04. New York, USA: Springer-Verlag, 2004: 123-139.
  • 10Longa P, Gebotys C. Setting Speed Records with the(Fractional) Multibase Non-adjacent form Method for Efficient Elliptic Curve Scalar Multiplication[D]. Waterloo, Canada: Department of Electrical and Computer Engineering, University of Waterloo, 2009.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部