期刊文献+

铝掺杂纳米氧化锌的液相火焰燃烧合成及其导电性研究 被引量:1

Al-doped ZnO Nano-particles Synthesized by Liquid-Feed Flame Spray Pyrolysis and Electrical Conductivity Study
原文传递
导出
摘要 采用液相火焰燃烧合成法制备得到了Al掺杂纳米氧化锌,该技术具有简单、连续和易于大规模产业化等优点。对合成得到的纳米ZnO进行了SEM和XRD表征,燃烧产物为直径约30~40nm的球形颗粒,为六方相结构。当掺杂浓度超过8mol%时导电氧化锌中出现立方相的ZnAl2O4尖晶石。Al掺杂纳米ZnO的导电性随着Al掺杂量的增加首先迅速提高,之后提高幅度逐渐变缓,在Al掺杂量为8.0mol%时,导电氧化锌的导电性最佳,而当掺杂量进一步增加后导电性反而有所降低。 Al-doped ZnO nano-particles were synthesized by liquid-feed flame spray pyrolysis, a single step, continuous, and scaleable process. The as-synthesized ZnO nano-particles were characterized by SEM and XRD. They exhibited small crystallite size ranging from 30 to 40 nm with spherical shape, and the crystal structure was wurtzite. The electrical conductivity of the ZnO nano-particles after reducing atmosphere heat treatment was investigated by varying Al doping concentration, and a minimum resistance was obtained at the doping concentration of 8 mol%.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S1期104-107,共4页 Rare Metal Materials and Engineering
基金 中国科学院重大科研装备研制项目(YZ200722) 热流状态下纳米颗粒制备过程表征装置
关键词 纳米氧化锌 铝掺杂 液相火焰燃烧合成法 ZnO nano-particles Al-doping liquid-feed flame spray pyrolysis
  • 相关文献

参考文献1

二级参考文献3

  • 1[1]Hong Y, Bots ML, Pan X, et al. Stroke incidence and mortality in rural and urban Shanghai from 1984 through. 1991. Stroke, 1994; 25: 1165.
  • 2[2]Cifu DX, Stewart DG. Factors affecting functional outcome after stroke: A critical review of rehabilitation intervention. Arch Phys Med Rehabil, 1999; 80: S-35.
  • 3[4]Fugl-Meyer AR, Jaasko L, Leyman I, et al. The poststroke hemiplegic patient. I: a method for evaluation of physical performance. Scand J Rehabil Med, 1975; 7: 13.

共引文献15

同被引文献41

  • 1张晓顺,翟秀静,邱竹贤,符岩,储刚.燃烧合成法制备纳米氧化锌[J].分子科学学报,2005,21(1):12-15. 被引量:8
  • 2周忠诚,阮建明,黄伯云,邹俭鹏,李松林,王前进.用燃烧合成法制备纳米氧化锌[J].粉末冶金材料科学与工程,2006,11(4):229-233. 被引量:6
  • 3Lee C R, Lee H W, Song J S, et al. [J]. Journal of Materials Synthesis and Processing,2001,9(5) :281-286.
  • 4Riahi-Noori N, Sarraf-Mamoory R, Alizadeh P, et al. [J] Jour- nal of Ceramic Processing Research, 2008,9 (3) : 246-249.
  • 5Witoon T, Permsirivanich T, Chareonpanich M. [J]. Ceramics International, 2013,39(3) : 3371-3375.
  • 6Rasouli S, Moeen S J. [J]. Journal of Alloys and Compounds, 2011,509(5) : 1915-1919.
  • 7Sharma S K, Pitale S S, Malik M M, et al.[J]. Physica B-Con- densed Matter, 2010,405 (3) : 866-874.
  • 8Ahmad M, Hong Z L, Ahmed E, et al.[J]. Ceramics Interna- tional,2013,39(3) :3007 3015.
  • 9Kikkawa S,Sasaki.H,Tamura H,et al. [J]. Materials Research Bulletin, 2004,39 (12) : 1821 1827.
  • 10Pradhan A K, Zhang K,Loutts G B, et al. [J]. Journal o{ Phys ies Condensed Matter, 2004,16(39) : 7123-7129.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部