期刊文献+

镍含量对超细WC-Ni-VC-TaC硬质合金结构和力学性能的影响 被引量:2

Influence of Ni Content on the Structure and Mechanical Properties of Ultrafine WC-Ni-VC-TaC Hardmetals
原文传递
导出
摘要 采用放电等离子烧结(SPS)方法,结合使用VC和TaC晶粒抑制剂,制备Ni质量分数为6%~10%的超细WC-Ni硬质合金。研究表明,所制备WC-Ni-VC-TaC硬质合金WC晶粒在0.2~0.4μm;合金中含有大量微孔,但微孔大小随合金中粘结相Ni含量增加而减小。且随合金中Ni含量增加,合金中WC晶粒略有增长,合金相对密度先减小后增大,硬度由24500MPa逐渐减小到18600MPa(HV1),但抗弯强度却由1600MPa增大到2140MPa。 A series of ultrafine WC-Ni hardmetals with different fractions of nickel metal binder from 6-10 wt% were fabricated by sparking plasma sintering with the assistance of VC and TaC as inhibitors of WC grain growth. The results indicate that the WC grain size of the as-prepared WC-Ni-VC-TaC hardmetals is in the range of 0.2-0.4 μm; there are lots of micro-pores in the materials, and their sizes are decreased with increasing content of Ni in the hardmetals. With the increase of Ni content in the hardmetals, the relative density of the as-prepared hardmetals is decreased first and then increased, and their hardness is decreased from 24500 MPa to 18600 MPa (HV1), but the flexural strength is increased from 1600 MPa to 2140 MPa.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S1期608-611,共4页 Rare Metal Materials and Engineering
基金 国家地质调查局地质大调查项目(1212010916026) 教育部高等学校博士学科点专项基金(20100022110002) 清华大学新型陶瓷与精细工艺国家重点实验室开放课题(KF0903) 中国地质大学超深钻探国家专业实验室开放课题(NSLD200801)
关键词 WC-Ni硬质合金 放电等离子烧结 力学性能 WC-Ni hardmetal sparking plasma sintering mechanical properties
  • 相关文献

参考文献8

二级参考文献26

  • 1范景莲,李志希,缪群,黄伯云,吴恩熙.超细纳米硬质合金及晶粒长大抑制剂的研究[J].粉末冶金技术,2004,22(5):259-265. 被引量:36
  • 2雍志华.-[J].稀有金属材料与工程,1997,26(2):40-44.
  • 3Park Y J, Hwang N M, Yoon D Y. Metall Trans A[J], 1996, 27: 2809
  • 4Morton C W, Wills D J, Stjernberg K. International Journal of Refractory Metals & Hard Materials[J], 2005, 23(2): 287
  • 5Upadhyaya A, Sarathy D. Materials and Design[J], 2001, 22(3): 511
  • 6Luyckx S, Osbome C, Cornish L A et al. Powder Metall[J], 1996, 39(3): 210
  • 7Bock A, Schubert W D, Lux B. Powder Metall lnt[J], 1992, 24(6): 20
  • 8Ravichandran K S. Acta Metall Mater[J], 1994, 42(5): 143
  • 9Topic I, Sockel H G, Wellmann P. Materials Science and EngeeringA[J], 2006, 423 (8): 306
  • 10Anstis G R, Chantikul P, Lawn B R et al. Journal of the American Ceramic Society[J], 1981, 64(9): 533

共引文献44

同被引文献22

  • 1Berger S, Porat R, Rosen R. Nanocrystalline materials: A study of WC-based hard metals[J]. Prog Mater Sci, 1997, 42(3): 311-320.
  • 2Fang Z Z, Wang X, Ryu T. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide: A review [J]. Int J Refract Met Hard Mater, 2009, 27 (2): 288-299.
  • 3SHEN Tingling, XIAO Daihong, OD Xiaoqin, et al. Preparation of ultrafine WC-IOCo composite powders by reduction and carbonization[J]. J Cent South Univ, 2013, 20(8): 2090-2095.
  • 4Fernandes C M, Senos AM R, Castanho J M. Effect of the Ni chemical distribution on the reactivity and densification of WC-(Fe/Ni/Cr) composite powders[J]. Mater Sci Forum, 2006, 514/515/516: 633-637.
  • 5Tiegs T N, Alexander K B, Plucknet K P. Ceramic composites with a ductile NhAI blinder phase[J]. Mater Sci Eng A, 1996, 209: 243-247.
  • 6Ahrnadian M, Wexler D, Chandra T, et al. Abrasive wear of WC-FeAI-B and WC-NhAI-B composites[J]. Int J Refract Met Hard Mater, 2005, 23: 155-159.
  • 7Williamson G K, Hall W H. X-ray broadening from filed aluminum and wolfram[J]. Acta Metall, 1953, I: 22-31.
  • 8Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained WC-Co hardmetals[J]. Int J Refract Met Hard Mater, 1998, 16(2): 133-142.
  • 9Ahmadian-Najafabadi M. Sintering, microstructure and properties of WC-FeAI-B and WC-NhAI-B[D]. New South Wales: University ofWollongong, 2005: 25-35.
  • 10Yeh C L. Combustion synthesis of NhAI by SHS with boron additions[J]. J Alloys Compnd, 2005, 390(1/2): 74-81.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部