期刊文献+

Wnt3a/β-catenin信号通路调节模拟微重力诱导的骨髓间充质干细胞增殖抑制 被引量:8

Wnt3a/β-catenin Signaling Pathway Mediates Inhibition of Proliferation of Mesenchymal Stem Cells Induced by Modeled Microgravity
下载PDF
导出
摘要 微重力环境对骨髓间充质干细胞(MSCs)的增殖行为起着重要调节作用,但其中的分子机理尚不清楚.采用平行平板旋转培养装置模拟微重力效应,考察了模拟微重力效应下MSCs增殖行为的变化以及Wnt3a/β-catenin信号通路在该过程中的作用.结果发现,模拟微重力效应明显抑制MSCs的增殖行为,下调Wnt3a mRJNA的表达,降低细胞质中游离β-catenin,减少β-catenin向细胞核转移,抑制Cyclin D1的表达.结果表明,Wnt3a/β-catenin信号通路可能介导了微重力效应诱导的MSCs增殖抑制. Microgravity is known to play an important role in regulating the proliferation of Mes- enchymal Stem Cells (MSC). However, information regarding the molecular mechanisms that link microgravity and MSC proliferation is still limited. In this study, using a parallel-plate clinostat to simulate microgravity effect, we examined the effect of Modeled Microgravity (MMG) on the prolif- eration of bone marrow-derived MSCs and the possible role of Wnt3a/β-catenin signaling pathway in this process. The results showed that MSCs subjected to MMG for 3 days exhibited significantly decrease of cell proliferation. Moreover, MMG weakened mRNA expression of Wnt3a, reduced unbound β-catenin in cytoplasm and subsequently inhibited the translocation of β-catenin into nucleus. Expression of Cyclin D1 at mRNA level in MSCs was also impaired after treatment with MMG. These results suggest that Wnt3a/β-catenin signaling pathway may be mediate inhibition of proliferation of MSCs induced by MMG.
出处 《空间科学学报》 CAS CSCD 北大核心 2016年第1期63-69,共7页 Chinese Journal of Space Science
基金 国家自然科学基金重点项目(11032012) 中国科学院微重力重点实验室开放课题(NML1516KFKT4-4) 重庆大学大型仪器设备开放基金(201406150056-57)共同资助
关键词 微重力 间充质干细胞 细胞增殖 WNT信号 Microgravity, Mesenchymal stem cell, Cell proliferation, Wnt signal
  • 相关文献

参考文献20

  • 1PITTENGER M F, MACKAY A M, BECK S C, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411): 143-147.
  • 2CAPLAN A I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine [J]. J. Cell. Phy- siol., 2007, 213(2): 341-347.
  • 3YUAN L, LUO Q, YANG L, et al. Role of FAK-ERK1/2 signaling pathway in proliferation of rat bone-marrow mesenchymal stem cells stimulated by cyclic stretching [J]. J. Med. Biol. Eng., 2013, 33(2): 229-238.
  • 4SARRAF C E, OTTO W R, EASTWOOD M. In vitro mesenchymal stem cell differentiation after mechanical stimulation [J]. Cell Prolif., 2011, 44(1): 99-108.
  • 5龙勉.如何在地球表面模拟空间微重力环境或效应:从空间细胞生长对微重力响应谈起[J].科学通报,2014,59(20):2004-2015. 被引量:10
  • 6OKADA A, ICHIKAWA J, TOZAWA K. Kidney stone formation during space flight and long-term bed rest [J]. Clin. Calcium, 2011, 21(10): 1505-1510.
  • 7WIENER T C. Space obstructive syndrome: Intracranial hypertension, intraocular pressure, and papilledema in space [J]. Aviat. Space Environ. Med., 2012, 83(1): 64- 66.
  • 8SHEYN D, PELLED G, NETANELY D, et al. The ef- fect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation sys- tem: A bioinformatics study[J]. Tissue Eng. Part A, 2010, 16(11): 3403-3412.
  • 9MEYERS V E, ZAYZAFOON M, DOUGLAS J T, et al. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis nd enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity [J]. J. Bone Miner. Res., 2005, 20(10): 1858-1866.
  • 10DAI Z Q, WANG R, LING S K, et al. Simulated mi- crogravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells [J]. Cell Prolif., 2007, 40(5): 671-684.

二级参考文献27

  • 1YANG Fan, GAO YuXin, ZHANG Yan, CHEN Juan & LONG Mian National Microgravity Laboratory and Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China.Developing a microfluidic-based system to quantify cell capture efficiency[J].Science China(Life Sciences),2009,52(2):173-181. 被引量:3
  • 2LI Hong,CHEN Juan,ZHANG Yan,SUN ShuJin,TAO ZuLai&LONG Mian.Effects of oriented substrates on cell morphology,the cell cycle,and the cytoskeleton in Ros 17/2.8 cells[J].Science China(Life Sciences),2010,53(9):1085-1091. 被引量:5
  • 3Bianeo P, Robey P G, Simmons P J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2008, 2 (4) : 313-319.
  • 4Conrad C, Niess H, Huss R, et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation, 2009, 119 (2) :281-289.
  • 5Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar M A. Effects of cyclic stretch on proliferation of mesenchymal stem cells and theirdifferentiation to smooth muscle cells. Biochemical and Biophysical Research Communications, 2009, 388 (3): 601-605.
  • 6Song G, Luo Q, Xu B, et al. Mechanical stretch-induced changes in cell morphology and mRNA expression of tendon/ ligament-associated gens in rat bone-marrow mesenchymal stem cell. Molecular & Cellular Biomeehanics, 2010, 7 (3) : 165-174.
  • 7Li Y J, Batra N N, You L, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. Journal of Orthopaedic Research, 2004, 22 (6) : 1283-1289.
  • 8Watanabe H. Extracellular matrix-rugulation of cancer invasion and metastasis. Gan to Kagaku Ryoho, 2010, 37 (11):2058-2061.
  • 9Sweeney N V, Cummins P M, Cotter E J, et al. Cyclic strain mediated regulation of vascular endothelial cell migration and tube formation. Biochemical and biophysical research communications, 2005, 329 (2) : 573-582.
  • 10Janik M E, Anna L, Vereecken P. Cell migration-The role of integrin glycosylation. Biochimica et Biophysica Acta - General Subjects, 2010, 1800(6) :545-555.

共引文献16

同被引文献67

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部