期刊文献+

利用马尔科夫链模型对多点地质统计建模影响因素分析及优化 被引量:5

Multi-point Geostatistics Modeling Factors Analysis and Optimization by Using Markov Chain Model
原文传递
导出
摘要 多点地质统计方法作为一种随机建模方法,在很多领域得到了广泛的应用,取得了很好的效果.但模拟过程中随机性强,难以控制其模拟效果.以地震尺度的精细离散模型(地震相)为训练图像,通过大量的实验探索,分析多点模式的选取对多点地质统计方法模拟效果的影响,提取模式大小、模式形态(各向异性)以及多级网格约束三个因素对建模结果影响.模式大小应根据模拟目标的尺度进行选择,模式的形态应与模拟地质目标的各向异性一致,多级网格控制的多少应权衡模拟目标的复杂性和计算速度.成功应用马尔科夫链模型,评价模型的空间结构恢复效果,对影响参数遍历设置和组合优化,探索了训练图像的最优多点模式参数设置组合. Multiple-point Geostatistics methods acts ,as a stochastic modeling approach has been widely used in many areas and achieved good results. Because of the strong randomness in simulation process, it is difficult to control the simulation results. Based on Multiple-point Geostatistics knowledge and training image made by precision earthquake discrete modeling (seismic face modeling), through a large number of experiments to explore, the article analyzed the effect of pattern selection method for Multiple-point Geostatistics simulation. Studles have shown that model size, model shape (Anisotropy) and muitigrid are the three significantly affected factors on the results of modeling. The model size should be selected by measuring the target scale. The model shape should be consistent with the anisotropy of simulation geologic targets. The selection of number of multigrid should weight the complexitY of simulated target and computation speed. And through the Markov chain model to evalUate recovery effect of spatial structure. Traverse setting and optimize the affecting parameters, Arrive at the optimal combination of parameter settings of this training image.
出处 《数学的实践与认识》 北大核心 2016年第1期202-211,共10页 Mathematics in Practice and Theory
关键词 多点地质统计 马尔科夫链模型 影响因素 分析优化 Multiple-point geostatistics Markov chain model influencing factor analysis and Optimization
  • 相关文献

参考文献11

  • 1Strebelle S.Sequential simulation drawing structures from training imagesfD].Thesis,Stanford University,Stanford,CA,2000.
  • 2Cears J.,Zhang T.Multiple-point geostatistics:a quantitative vehicle for integrating geologic analogs into multiple reservoir models[C]//Proceeding to geoEnv Neuehatel,Switzerland,2004:13-15.
  • 3Guardiano E,Srivastava R M.Multivariate geostatistics:beyond bivariate moments[J].In Soares,A.,editor,Geostatistics-Troia.Kluwer Academic Publication,1993(1):133-144.
  • 4Strebelle S,Journel A.Reservoir modeling using multiple-Point statistics.Paper SPE,2001.71324.
  • 5白鹤翔,葛咏,李德玉.多点模拟算法与试验对比分析[J].地球信息科学,2006,8(4):117-121. 被引量:9
  • 6Trans T.Improving variogram reproduction on dense simulation grids[J].Computer and Geosciences,1994,20(7):1161-1168.
  • 7吴胜和,李文克.多点地质统计学——理论、应用与展望[J].古地理学报,2005,7(1):137-144. 被引量:126
  • 8Amro Elfeki,Michel Dekking.A Markov Chain Model for Subsurface Characterization[J]Theory and Applications Mathematical Geology,2006,33(4):569-589.
  • 9Hakon Toftaker and Hakon Tjelmeland.Construction of binary multi-grid Markov random field prior models from training images[J].Mathematical Geosciences,2013(45):383-409.
  • 10Stien M,and Kolbjornsen O.Facies modeling using a Markov mesh model specification[J].Mathematical Geology,2011(43):611-624.

二级参考文献22

  • 1吴胜和,李文克.多点地质统计学——理论、应用与展望[J].古地理学报,2005,7(1):137-144. 被引量:126
  • 2Caers J and Journel A G.1998.Stochastic reservoir simulation using neural networks trained on outcrop data.SPE paper No.49026.
  • 3Deutsch C V.1992.Annealing techniques applied to reservoir modeling and the integration of geological and engineering(well test) data:[Doctoral dissertation].Stanford University,306.
  • 4Guardiano F and Srivastava R M.1993.Multivariate geostatistics: beyond bivariate moments.In: Soares A (ed).Geostatistics-Troia.Kluwer Academic Publications,Dordrecht,113~114.
  • 5Haldorsen H and Damsleth E.1990.Stochastic modeling.Journal of Petroleum Technology,42(4): 404~412.
  • 6Holden L,Hauge R,Skare Φ and Skorstad.1998.Modeling of fluvial reservoirs with object models.Mathematical Geology,30(5):473~495.
  • 7Journel A G.2002.Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses.Mathematical Geology,34(5): 573~596.
  • 8Liu Y.2003.Downscaling seismic data into a geologically sound numerical model:[Doctoral dissertation thesis].Stanford University,134~207.
  • 9Strebelle S and Journel A.2001.Reservoir modeling using multiple-point statistics.Paper SPE 71324,presented at the 2001 SPE Annual Technical Conference and Exhibition.
  • 10Strebelle S.2002.Conditional simulation of complex geological structures using multiple-point statistics.Mathematical Geology,34(1):1~21.

共引文献125

同被引文献27

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部