期刊文献+

Mordell方程y^3=x^2+2p^4的正整数解

The Positive Integer Solutions of Mordell's Equation y^3=x^2+2p^4
原文传递
导出
摘要 设p是奇素数.对于非负整数r,设U_(2r+1)=(α^(2r+1)+β^(2r+1))/2^(1/2),V_(2r+1)=(α^(2r+1)-β^(2r+1))/6^(1/2),其中α=(1+3^(1/2))/2^(1/2),β=(1-3^(1/2))/2^(1/2).运用初等数论方法证明了:方程y^3=x^2+2p^4有适合gcd(x,y)=1的正整数解(x,y)的充要条件是p=U_(2m+1),其中m是正整数.当上述条件成立时,方程仅有正整数解(x,y)=(V(2m+1)(V_(2m+1)~2-6),V_(2m+1)~2+2)适合gcd(x,y)=1.由此可知:当p<10000时,方程仅有正整数解(p,x,y)=(5,9,11),(19,1265,123),(71,68675,1683)和(3691,9677201305,4541163)适合gcd(x,y)=1. Let p be an odd prime. For any nonnegative integer r, let U2r+1 = (α^2r+1 + β^2r+1)/√2 and V2r+1 = (α^2r+1 - β^2r+1)/√6, where α = (1 + x√3)√2,β : (1 -√3)/√2.In this paper, using some elementary number theory methods, we prove that the equation y^3 = x^2+ 2p^4 has positive integer solutions ix, y) with gcd(x,y) = 1 if and only if p = U2m+1, where m is a positive integer. Moreover, if p = U2m+1 then the equation has only the positive integer solution (x,y) = (V2m+1(V2m+1^2- 6), V2m+1^2, + 2) with gcd(x,y) = 1. Thus it can be seen that if p 〈 10000, then the equation has only the positive integer solutions (p,x,y) = (5,9,11),(19, 1265, 123), (71, 68675, 1683) and (3691, 9677201305, 4541163) with gcd(x, y) = 1.
作者 杜晓英
出处 《数学的实践与认识》 北大核心 2016年第1期263-266,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金(11371291) 陕西省自然科学基金重点项目(2013JZ001)
关键词 三次DIOPHANTINE方程 Mordell方程 正整数解 cubic diophantine equation Mordell equation positive integer solution
  • 相关文献

参考文献11

  • 1Dickson L E.History of the Theory of Numbers,vol.ii[M].Washington:Carnegie Institution,1920.
  • 2Mordell L J.Diophantine equation[M].London:Academic Press,1969.
  • 3Baker A.Contributions to the theory of diophantine equation II:The diophantine equation y2=x~3+k[J].Phil Trans Roy Soc London,1969,A263:192-208.
  • 4Stark H M.Effective estimates of solutions of some diophantine equation[J].Acta Arith,1973,24(3):251-259.
  • 5Sprindzuk V G.Classical diophantine equation in two unknowns[M].Moskva:Nauka,1982.(in Russian).
  • 6Gebel J,Petho A,and Zimmer H G.On Mordell's equation[J].Compos Math,1998,110(3):335-367.
  • 7Juricevic R.Explicit estimates of solutions of some diophantine equation[J].Punct Approx,Comment Math,2008,38(2):171-194.
  • 8管训贵.不定方程y^3=x^2+1250的全部整数解[J].河北北方学院学报(自然科学版),2011,27(4):18-19. 被引量:4
  • 9刘建,冯蕾.不定方程y^3=x^2+260642的全部整数解[J].延安大学学报(自然科学版),2014,33(4):4-5. 被引量:2
  • 10Ljunggren W.Ein satz iiber die Diophantische gleichung Ax~2-By~4=C(C=1,2,4)[J].Tolfte Skand.Mat.,Lund,1953:188-194.

二级参考文献8

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部