摘要
设p是奇素数.对于非负整数r,设U_(2r+1)=(α^(2r+1)+β^(2r+1))/2^(1/2),V_(2r+1)=(α^(2r+1)-β^(2r+1))/6^(1/2),其中α=(1+3^(1/2))/2^(1/2),β=(1-3^(1/2))/2^(1/2).运用初等数论方法证明了:方程y^3=x^2+2p^4有适合gcd(x,y)=1的正整数解(x,y)的充要条件是p=U_(2m+1),其中m是正整数.当上述条件成立时,方程仅有正整数解(x,y)=(V(2m+1)(V_(2m+1)~2-6),V_(2m+1)~2+2)适合gcd(x,y)=1.由此可知:当p<10000时,方程仅有正整数解(p,x,y)=(5,9,11),(19,1265,123),(71,68675,1683)和(3691,9677201305,4541163)适合gcd(x,y)=1.
Let p be an odd prime. For any nonnegative integer r, let U2r+1 = (α^2r+1 + β^2r+1)/√2 and V2r+1 = (α^2r+1 - β^2r+1)/√6, where α = (1 + x√3)√2,β : (1 -√3)/√2.In this paper, using some elementary number theory methods, we prove that the equation y^3 = x^2+ 2p^4 has positive integer solutions ix, y) with gcd(x,y) = 1 if and only if p = U2m+1, where m is a positive integer. Moreover, if p = U2m+1 then the equation has only the positive integer solution (x,y) = (V2m+1(V2m+1^2- 6), V2m+1^2, + 2) with gcd(x,y) = 1. Thus it can be seen that if p 〈 10000, then the equation has only the positive integer solutions (p,x,y) = (5,9,11),(19, 1265, 123), (71, 68675, 1683) and (3691, 9677201305, 4541163) with gcd(x, y) = 1.
出处
《数学的实践与认识》
北大核心
2016年第1期263-266,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11371291)
陕西省自然科学基金重点项目(2013JZ001)