期刊文献+

Buckling of a stiff thin film on a compliant substrate under anisotropic biaxial prestrain

Buckling of a stiff thin film on a compliant substrate under anisotropic biaxial prestrain
原文传递
导出
摘要 The structure of stretchable electronics is based on the buckling of a thin film on a compliant substrate. Under anisotropic biaxial prestrains, this structure may buckle into several patterns, including cylindrical, checkerboard, and undulating patterns. The displacement and energy of each pattern are deduced analytically. By comparing their minimum potential energies, the critical buckling condition of each pattern is determined. After secondary bifurcation, the checkerboard pattern occurs just above the critical prestrains, but the undulating pattern dominates other regions. The buckling amplitude and wavenumber of the undulating pattern are shown under biaxial prestrains. Even if the structure is under equi-biaxial prestrains, it may buckle into an asymmetric undulating pattern. The structure of stretchable electronics is based on the buckling of a thin film on a compliant substrate. Under anisotropic bi- axial prestrains, this structure may buckle into several patterns, including cylindrical, checkerboard, and undulating patterns. The displacement and energy of each pattern are deduced analytically. By comparing their minimum potential energies, the critical buckling condition of each pattern is determined. After secondary bifurcation, the checkerboard pattern occurs just above the critical prestrains, but the undulating pattern dominates other regions. The buckling amplitude and wavenumber of the undulating pattern are shown under biaxial prestrains. Even if the structure is under equi-biaxial prestrains, it may buckle into an asymmetric undulating pattern.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第2期57-66,共10页 中国科学:物理学、力学、天文学(英文版)
关键词 film SUBSTRATE BUCKLING BIAXIAL ANISOTROPIC undulating 柔性衬底 各向异性 双轴向 屈曲 薄膜 预应变 僵硬 电子结构
  • 相关文献

参考文献14

  • 1J. A. Rogers, and Z. J. Bao, Polym. Sci. Pol. Chem. 40, 3327 (2002).
  • 2S. Wagner, S. P. Lacour, J. Jones, P. H. Hsu, J. C. Sturm, T. Li, and Z. G. Suo, Phys. E 25, 326 (2004).
  • 3M. B. Schubert, and J. H. Werner, Mater. Today 9, 42 (2006).
  • 4D. Y. Khang, H. Q. Jiang, Y. Huang, and J. A. Rogers, Science 311, 208 (2006).
  • 5Z. Y. Huang, W. Hong, and Z. Suo, J. Mech. Phys. Solids 53, 2101 (2005).
  • 6R. Huang, J. Mech. Phys. Solids 53, 63 (2005).
  • 7R. Huang, and Z. Suo, Int. J. Solids Struct. 39, 1791 (2002).
  • 8S. H. Im, and R. Huang, J. Mech. Phys. Solids 56, 3315 (2008).
  • 9H. Q. Jiang, D. Y. Khang, H. Y. Fei, H. Kim, Y. G. Huang, J. L. Xiao, and J. A. Rogers, J. Mech. Phys. Solids 56, 2585 (2008).
  • 10X. Chen, and J. W. Hutchinson, J. Appl. Mech. 71, 597 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部