期刊文献+

Numerical simulation of cavitating flow around a slender body with slip boundary condition

Numerical simulation of cavitating flow around a slender body with slip boundary condition
原文传递
导出
摘要 In this paper, we perform a numerical simulation of the cavitating flow around an underwater hemispherical-head slender body running at a high speed. For the first time, the slip boundary condition is introduced into this problem, and we find that the slip boundary condition has a big influence on the cavitation in the flow-separation zone. By simulating the cavitating flow under different cavitation numbers, we demonstrate that the slip boundary condition can effectively reduce the intensity of cavitation, as represented by the length of cavitation bubbles. The present paper provides a new method for utilization of new surface materials to control the cavitation on the underwater moving objects. In this paper, we perform a numerical simulation of the cavitating flow around an underwater hemispherical-head slender body running at a high speed. For the first time, the slip boundary condition is introduced into this problem, and we find that the slip boundary condition has a big influence on the cavitation in the flow-separation zone. By simulating the cavitating flow under different cavitation numbers, we demonstrate that the slip boundary condition can effectively reduce the intensity of cavitation, as represented by the length of cavitation bubbles. The present paper provides a new method for utilization of new surface ma- terials to control the cavitation on the underwater moving objects.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第2期85-90,共6页 中国科学:物理学、力学、天文学(英文版)
基金 the National Natural Science Foundation of China(Grant No.11172001)
关键词 滑移边界条件 数值模拟 流场模拟 空化数 细长体 水下运动物体 高速运行 空化强度 cavitating flow, slender body, slip boundary condition
  • 相关文献

参考文献21

  • 1J. P. Franc, Design and Analysis of High Speed Pumps (Grenoble University, Grenoble, 2006), pp. 1-35.
  • 2G. Wang, I. Senocak, W. Shyy, T. Ikohagi, and S. Cao, Prog. Aerosp. Sci. 37, 551 (2001).
  • 3W. Yuan, J. Sauer, and G. H. Schnerr, Mec. Ind. 2, 383 (2001).
  • 4M. Dular, R. Bachert, B. Stoffel, and B. ?irok, Eur. J. Mech. B-Fluid 24, 522 (2005).
  • 5O. Coutier-delgosha, B. Stutz, A. Vabre, and S. Legoupil, J. Fluid Mech. 578, 171 (2007).
  • 6R. F. Kunz, D. A. Boger, T. S. Chyczewski, D. R. Stinebring, H. J. Gibeling, and T. R. Govindan, in High Reynolds Number, Unsteady Multi-Phase CFD Modeling of Cavitating Flows: Proceedings of FEDSM ‘99, 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, USA, 14-19 March 1999, ASME paper No. FEDSM 99-7364 (ASME J Fluids Engineering, San Francisco, 1999).
  • 7F. M. Owis, and A. H. Nayfeh, Eur. J. Mech. B-Fluid 23, 339 (2004).
  • 8N. V. Priezjev, A. A. Darhuber, and S. M. Troian, Phys. Rev. E 71, 041608 (2005).
  • 9D. Legendre, E. Lauga, and J. Magnaudet, J. Fluid Mech. 633, 437 (2009).
  • 10D. Li, S. Li, Y. Xue, Y. Yang, W. Su, Z. Xia, Y. Shi, H. Lin, and H. Duan, J. Fluid Struct. 51, 211 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部