期刊文献+

低复杂度大规模MIMO系统上行功率分配算法 被引量:1

Lowcomplexity power allocation algorithms for uplink of massive MIMO systems
下载PDF
导出
摘要 为了降低莱斯信道衰落下多小区大规模多输入多输出系统上行链路功率分配算法的复杂度,提出了基于小区近似和速率的低复杂度功率分配算法.首先,给出基站采用最大比合并接收时的小区和速率近似表达式及其上下界;然后,在小区发射总功率受限及保证用户服务质量需求的条件下,提出分别基于上、下界的2种功率分配算法.这2种算法仅利用大尺度衰落等长时信道信息,减少了信道估计开销及运行功率分配算法的次数,从而降低了系统实现复杂度.仿真结果表明,与等功率分配算法相比,所提算法在低信噪比下能够显著提升系统和速率;然而,信噪比越大,性能增益越小.因此,这种新的功率分配算法可以有效应用于低信噪比情况. In order to reduce the complexity of the power allocation algorithm for the multi-cell massive multiple-input multiple-output( MIMO) systems in Ricean fading channels,lowcomplexity power allocation algorithms based on the uplink sum rate are proposed. First,in the case of using the maximal-ratio combing( MRC) receiver,an approximate expression of the uplink sum rate and its lower and upper bounds are presented. Then,two power allocation algorithms based on lower and upper bounds respectively are put forward,which satisfies that the total power transmitted by all users is limit and the quality of service of every user is met. These two algorithms only utilizing the long term channel state information such as large-scale fading can reduce the channel estimation overhead and times to perform the power allocation schemes,inducing the reduce of the complexity of system implementation. The simulation results showthat,compared with the equal power allocation algorithms,the proposed power allocation algorithms can improve the sum rate significantly with the lowsignal to noise ratio. However,the higher the signal to noise ratio,the smaller the performance gain. Therefore,the proposed power allocation algorithms can be effectively utilized in the situations with lowsignal to noise ratio.
作者 范利 金石
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期7-12,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61222102) 国家国际科技合作专项资助项目(2014DFT10300)
关键词 大规模多输入多输出 多小区 莱斯衰落 最大比合并 功率分配 massive multiple-input multiple-output multi-cell Ricean fading maximal-ratio combing power allocation
  • 相关文献

参考文献10

  • 1Telatar I E. Capacity of multi-antenna Gaussian chan-nels [J ]. European Transactions on Telecommunica-tions, 1999,10(6) : 585 -595.
  • 2Gesbert D, Kountouris M, Heath R W, et al. Shiftingthe MIMO paradigm [ J ] . IEEE Signal Processing Mag-azine, 2007,24(5): 36-46.
  • 3Marzetta T L. Non-cooperative cellular wireless withunlimited numbers of base station antennas [ J]. IEEETransactions on Wireless Communications, 2010, 9(11): 3590-3600.
  • 4Ngo H Q, Larsson E G, Marzetta T L. Energy andspectral efficiency of very large multiuser MIMO sys-tems [J ]. IEEE Transactions on Communications,2013,61(4): 1436 - 1449.
  • 5Pitarokoilis A,Mohammed S K,Larsson E G. On theoptimality of single-carrier transmission in large-scaleantenna systems [ J ]. IEEE Wireless CommunicationsLetters, 2012, 1(4); 276-279.
  • 6Hoydis J, Brink S T, Debbah M, Massive MIMO in theUL/DL of cellular networks : How many antennas dowe need? [ J]. IEEE Journal on Selected Areas in Com-munications ,2013,31(2) : 160 -171.
  • 7Andrews J G, Buzzi S, Choi W, et al. What will 5 Gbe? [ J]. IEEE Journal on Selected Areas in Communi-cations, 2014,32(6) : 1065 -1082.
  • 8Ngo H Q,Larsson E G, Marzetta T L. The multicellmultiuser MIMO uplink with very large antenna arraysand a finite-dimensional channel [ J ]. IEEE Transac-tions on Communications, 2013,61(6) : 2350 -2361.
  • 9Zhang Q, Jin S, Wong K K, et al. Power scaling ofuplink massive MIMO systems with arbitrary-rank chan-nel means [ J]. IEEE Journal of Selected Topics in Sig-nal Processing, 2014,8(5) : 966 -981.
  • 10Fan L X,Huang Y M, Zhang F, et al. Power controland low~complexity receiver for uplink massive MIMOsystems [ C ] //IEEE/CIC International Conference onCommunications in China. Shanghai, China, 2014:266-270.

同被引文献15

  • 1哈米德·贾法哈尼.空时编码的理论与实践[M].任品毅,译.西安:西安交通大学出版社,2007.
  • 2Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays [J]. IEEE Signal Process Magazine, 2013, 30(1): 40-60. DOI:10.1109/MSP.2011.2178495.
  • 3Sinha N B, Bera R, Mitra M. MIMO detection algorithms for high data rate wireless transmission [J]. Journal of Computer Science and Engineering, 2010, 1(1): 91-98.
  • 4Jiang Y, Varanasi M K, Li J. Performance analysis of ZF and MMSE equalizers for MIMO systems: An in-depth study of the high SNR regime [J]. IEEE Transactions on Information Theory, 2011, 57(4): 2008—2026. DOI:10.1109/tit.2011.2112070.
  • 5Suthisopapan P, Kasai K, Imtawil V, et al. Approaching capacity of large MIMO systems by non-binary LDPC codes and MMSE detection [C]//IEEE International Symposium on Information Theory. Cambridge, Massachusetts, USA, 2012: 1712-1716.
  • 6Basnayaka D A, Smith P J, Martin P A. Performance analysis of macrodiversity MIMO systems with MMSE and ZF receivers in flat Rayleigh fading [J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2240-2251. DOI:10.1109/twc.2013.032113.120798.
  • 7Ngo H Q, Suraweera H A, Matthaiou M, et al. Multipair full-duplex relaying with massive arrays and linear processing [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1721-1737. DOI:10.1109/jsac.2014.2330091.
  • 8Khansefid A, Minn H. Performance bounds for massive MIMO uplink [C]//2014 IEEE Global Conference on Signal and Information Processing(GlobalSIP). Atlanta, GA, USA, 2014:632-636. DOI:10.1109/globalsip.2014.7032194.
  • 9Pitarokoilis A, Mohammed S K, Larsson E G. Uplink performance of time-reversal MRC in massive MIMO systems subject to phase noise [J]. IEEE Transactions on Wireless Communications, 2013, 14(2): 711-723.
  • 10Fan Li, Jin Shi. Low complexity power allocation algorithms for uplink of massive MIMO systems[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(1): 7-12. DOI:10.3969/j.issn.1001-0505.2016.01.002.(in Chinese).

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部