期刊文献+

细颗粒长大特性的直接测量 被引量:3

Direct measurement of fine particles growth characteristics
下载PDF
导出
摘要 为了研究燃烧源产生细颗粒在过饱和条件下的长大特性,设计了基于冷气流与热水接触形成过饱和环境的生长管来促进细颗粒的长大.利用热风保温的方式防止测量窗口水汽的凝结,从而实现了直接测量细颗粒长大后的液滴粒径分布.利用实验系统研究了热水温度、初始颗粒浓度、气体流量对细颗粒长大特性的影响.实验结果表明:热水温度的上升对细颗粒的长大影响非常明显;而细颗粒的初始浓度增加则不利于细颗粒的长大;气体流量的增大在一定范围内对细颗粒的长大影响较小,而流量大于4 L/min时,则影响较大.在最优的实验条件下,平均粒径为0.197μm的细颗粒长大为5.411μm. To study the growth characteristics of combustion emission fine particles under supersaturation condition,a growth tube in which the supersaturation was formed by cooled gas flowmeeting with hot water was designed to facilitate fine particle enlargement. The droplet size distribution after particle enlargement was measured directly by preventing vapor from condensing on measurement windowwith a hot airflow. The influences of hot water temperature,initial number concentration and gas flowon fine particle growth characteristics were studied by the experimental apparatus. The results showthat the increase of water temperature highly improves the performance of fine particle enlargement,and the higher concentration of initial particles disfavors the fine particle enlargement.The increase of gas flowslightly affects the fine particle enlargement within a certain range. However,when the gas flowincreases to 4 L / min,it has a significant influence on particle growth. Under the optimal experiment condition,the mean diameter of the fine particle with an initial mean size of0. 197 μm can be enlarged to 5. 411 μm.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期70-75,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51576043) 国家重点基础研究发展计划(973计划)资助项目(2013CB228504) 能源高效清洁利用湖南省高校重点实验室开放基金资助项目(2015NGQ003)
关键词 细颗粒 过饱和水汽 凝结长大 长大特性 fine particle supersaturation water vapor condensation and growth growth characteristics
  • 相关文献

参考文献19

  • 1Seinfeld J H,Pandis S N. Atmospheric chemistry andphysics[U]. New York: John Wiley, 1998 : 1326.
  • 2徐俊超,张军,周璐璐,杨林军,袁竹林.蒸汽凝结促进PM2.5长大的研究现状[J].现代化工,2014,34(3):20-24. 被引量:11
  • 3Schauer P J. Removal of submicron aerosol particlesfrom moving gas stream [ J ]. Industrial & EngineeringChemistry, 1951,43 (7 ) : 1532 - 1538. DOI: 10.1021/ie50499a022.
  • 4Yoshida T, Kousaka Y, Okuyama K. Growth of aero-sol particles by condensation[ J]. Industrial & Engineer-ing Chemistry Fundamentals, 1976,15(1): 37 - 41.DOI: 10.1021/il60057a007.
  • 5Chen C C, Shu H K, Yang Y K. Nucleation-assistedprocess for the removal of fine aerosol particles [ J ]. In-dustrial & Engineering Chemistry Research,1993,32(7): 1509-1519. DOI: 10.1021/ie00019a027.
  • 6Heidenreich S, Ebert F. Condensational droplet growthas a preconditioning technique for the separation of sub-micron particles from gases[ J]. Chemical Engineering&Processing Process Intensification, 1995,34(3) :235-244. DOI: 10.1016/0255-2701(94)04009-5.
  • 7Heidenreich S,Vogt U,Buttner H, et al. A novelprocess to separate submicron particles from gases : Acascade of packed columns [ J]. Chemical EngineeringScience,2000, 55(99) : 2895 - 2905. DOI: 10. 1016/S0009 - 2509 (99) 00554 - 0.
  • 8Fisenko S P,Wang W N, Shimada M,et al. Vaporcondensation on nanoparticles in the mixer of a particlesize magnifier [ J ]. International Journal of Heat &MassTransfer,2007, 50 ( 11/12) : 2333 - 2338. DOI: 10.1016/j. ijheatmasstransfer. 2006.10.046.
  • 9Joannon M, Cozzolino G, Cavaliere A, et al. Hetero-geneous nucleation activation in a condensational scrub-ber for particulate abatement[J]. Fuel Processing Tech-nology, 2013,107(1):113-118.DOI: 10. 1016/j. fu-proc. 2012.10.004.
  • 10Chen C C, Guo M S, Tsai Y J, et al. Heterogeneousnucleation of water vapor on submicrometer particles ofSiC, Si02,and naphthalene[ J]. Journal of Colloid &Interface Science,1998,198(2) :354 - 367. DOI: 10.1006/jcis. 1997.5298.

二级参考文献39

共引文献25

同被引文献23

  • 1袁竹林,凡凤仙,姚刚,赵兵,沈湘林.声波对悬浮PM_(2.5)作用的数值模拟与实验研究[J].燃烧科学与技术,2005,11(4):298-302. 被引量:10
  • 2凡凤仙,袁竹林.外加声场对增加PM_(2.5)碰撞几率的数值模拟研究[J].中国电机工程学报,2006,26(11):12-16. 被引量:15
  • 3颜金培,杨林军,沈湘林.燃烧源PM_(2.5)微粒润湿性能[J].东南大学学报(自然科学版),2006,36(5):760-764. 被引量:29
  • 4Xu J C, Zhang J, Yu Y, et al. Characteristics of vapor condensation on coal-fired fine particles [ J ]. Energy & Fuels, 2016, 30(3) : 1822 - 1828, DOI: 10. 1021/acs. energyfuels. 5b02200.
  • 5Vohra V, Heist R H. The flow diffusion nucleation chamber: A quantitative tool for nucleation research [J]. The Journal of Chemical Physics, 1996,104( 1 ) : 382 - 395. DOI: 10. 1063/1. 470837.
  • 6Smorodin V Y, Hopke P K. Condensation activation and nucleation on heterogeneous aerosol nanoparticles [J]. The Journal of Physical Chemistry B, 2004,108 (26) :9147 - 9157.
  • 7Collings N, Rongchai K, Symonds J P R. A condensa- tion particle counter insensitive to volatile particles [ J ]. Journal of Aerosol Science, 2014, 73:27 - 38. DOI: 10. 1016/j. jaerosci. 2014.03. 003.
  • 8Hering S V, Stolzenburg M R. A method for particle size amplification by water condensation in a laminar, thermal- ly diffusive flow [ J ]. Aerosol Science and Technology, 2005, 39 (5) :428 - 436. DOI: 10. 1080/027868290953416.
  • 9Tammaro M, Di Natale F, Salluzzo A, et al. Heteroge- neous condensation of submicron particles in a growth tube[ J]. Chemical Engineering Science, 2012, 74 : 124 - 134. DOI:10. 1016/j. ces. 2012.02. 023.
  • 10Fisenko S P, Brin A A. Heat and mass transfer and condensation interference in a laminar flow diffusion chamber[ J ]. International Journal of Heat and Mass Transfer, 2006, 49(5) : 1004 - 1014. DOI: 10. 1016/ j. ijheatmasstransfer. 2005.09. 007.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部