期刊文献+

Sum-connectivity index of a graph

Sum-connectivity index of a graph
原文传递
导出
摘要 Let G be a simple connected graph, and let di be the degree of its i-th vertex. The sure,connectivity index of the graph G is defined as χ(G) =∑vivj∈E(G)(di+dj)-1/2.We discuss the effect onχ(G)of inserting an edge into a graph. Moreover, we obtain the relations between sum-connectivity index and Randid index. Let G be a simple connected graph, and let di be the degree of its i-th vertex. The sure,connectivity index of the graph G is defined as χ(G) =∑vivj∈E(G)(di+dj)-1/2.We discuss the effect onχ(G)of inserting an edge into a graph. Moreover, we obtain the relations between sum-connectivity index and Randid index.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第1期47-54,共8页 中国高等学校学术文摘·数学(英文)
关键词 GRAPH Randid index sum-connectivity index minimum degree Graph, Randid index, sum-connectivity index, minimum degree
  • 相关文献

参考文献13

  • 1Lull B, Trinajstid N, Zhou B. Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem Phys Lett, 2009, 475: 146-148.
  • 2Lull5 B Nikoli5 S, Trinajsti5 N, Zhou B, Turk S I. Sum-connectivity index. In: Gutman I, Furtula B, eds. Novel Molecular Structure Descriptors--Theory and Applications I. University of Kragujevac, Kragujevac, 2010, 101-136.
  • 3Du Z, Zhou B, Trinajstid N. Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number. J Math Chem, 2010, 47:842-855.
  • 4Li X, Gutman I. Mathematical Aspects of Randid-type Molecular Structure Descriptors. Mathematical Chemistry Monographs, No i. Kragujevac: University of Kragujevac 2006.
  • 5Li X, Shi Y, A survey on the Randid index. MATCH Commun Math Comput Chem, 2008, 59(1): 127-156.
  • 6Randid M. On characterization of molecular branching. J Am Chem Soc, 1975, 97: 6609-6615.
  • 7Tache R M. General sum-connectivity index with alpha >= 1 for bicyclic graphs. MATCH Commun Math Comput Chem, 2014, 72:761-774.
  • 8Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley- VCH, 2000.
  • 9Tomescu I, Jamil M K. Maximum general sum-connectivity index for trees with given independence number. MATCH Commun Math Comput Chem, 2014, 72:715-722.
  • 10Tomescu I, Kanwal S. Ordering trees having small general sum-connectivity index. MATCH Commun Math Comput Chem, 2013, 69:535-548.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部