期刊文献+

Boundedness of θ-type Calderon-Zygmund operators on non-homogeneous metric measure space 被引量:2

Boundedness of θ-type Calderon-Zygmund operators on non-homogeneous metric measure space
原文传递
导出
摘要 Let (X,d,μ) be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions in the sense of HytSnen. Under this assumption, we prove that θ-type Calderon-Zygmund operators which are bounded on L2(μ) are also bounded from L∞(μ) into RBMO(μ) and from H1,∞at(μ) into L1(μ). Let (X,d,μ) be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions in the sense of HytSnen. Under this assumption, we prove that θ-type Calderon-Zygmund operators which are bounded on L2(μ) are also bounded from L∞(μ) into RBMO(μ) and from H1,∞at(μ) into L1(μ).
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第1期141-153,共13页 中国高等学校学术文摘·数学(英文)
基金 This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271091).
关键词 Non-homogeneous spaces θ-type Calderon-Zygmund operators RBMO(μ) space H1 ∞at(μ) space Non-homogeneous spaces, θ-type Calderon-Zygmund operators,RBMO(μ) space, H1,∞at(μ) space
  • 相关文献

参考文献1

二级参考文献12

  • 1Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar's inequalities for Calderon-Zygmund operators on non-homogeneous spaces. Internat Math. Res. Notices, 9, 463-487 (1998)
  • 2Nazarov, F., Treil, S., Volberg, A.: Accretive system Tb-theorems on nonhomogeneous spaces. Duke Math.J., 113, 259-312 (2002)
  • 3Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math., 190, 151-239(2003)
  • 4Orobitg, J., Perez, C.: Ap weights for nondoubling measures in R^n and applications. Trans. Amer. Math.Soc., 354, 2013-2033 (2002)
  • 5Tolsa, X.: A T(1) theorem for non-doubling measures with atoms. Proc. London Math. Soc., 82(3),195-228 (2001)
  • 6Tolsa, X.: BMO, H^1 and Calderdn-Zygmund operators for non doubling measures. Math. Ann., 319,89-149 (2001)
  • 7Tolsa, X.: Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv. Math., 164,57-116 (2001)
  • 8Tolsa, X.: A proof of the weak (1, 1) inequality for singular integrals with non doubling measures based on a Calderdn-Zygmund decomposition. Publ. Mat., 45, 163-174 (2001)
  • 9Tolsa, X.: The space H^1 for nondoubling measures in terms of a grand maximal operator. Trans. Amer.Math. Soc., 355, 315-348 (2003)
  • 10Tolsa, X.: Painleve's problem and the semiadditivity of analytic capacity. Acta Math., 190, 105-149 (2003)

共引文献3

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部