期刊文献+

HURWITZ-HODGE INTEGRAL IDENTITIES FROM THE ORBIFOLD MARIO-VAFA FORMULA

HURWITZ-HODGE INTEGRAL IDENTITIES FROM THE ORBIFOLD MARIO-VAFA FORMULA
下载PDF
导出
摘要 In this paper, we present some polynomial identities of Hurwitz-Hodge integral. Subsequently, we present how to obtain some Hurwitz-Hodge integral identities from the polynomial identity. Lastly, we give a recursion formula for Hurwitz-Hodge integral (TbL λgλ1)ag. In this paper, we present some polynomial identities of Hurwitz-Hodge integral. Subsequently, we present how to obtain some Hurwitz-Hodge integral identities from the polynomial identity. Lastly, we give a recursion formula for Hurwitz-Hodge integral (TbL λgλ1)ag.
作者 赵晨
出处 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期139-156,共18页 数学物理学报(B辑英文版)
关键词 Hurwitz-Hodge integral orbifold Marifio-Vafa formula polynomial identities recursion formula Hurwitz-Hodge integral orbifold Marifio-Vafa formula polynomial identities recursion formula
  • 相关文献

参考文献4

二级参考文献48

  • 1Dubrovin B. Geometry of 2D topological field theories//Integrable systems and quantum groups (Montecatini Terme, 1993). Lecture Notes in Math, Vol. 1620. Berlin: Springer, 1996:120-348.
  • 2Hertling C. Frobenius manifolds and moduli spaces for singularities//Cambridge Tracts in Mathematics. Vol. 151. Cambridge: Cambridge University Press, 2002.
  • 3Sabbah C. Deformations isomonodromiques et varietes de Frobenius. Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP Sciences, Les Ulis, 2002, Matheatiques (Les Ulis). [Mathematics (Les Ulis)].
  • 4Strachan I A B. Frobenius submanifolds. J Geom Phys, 2001, 38(3/4): 285- 307.
  • 5Strachan I A B. Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures. Differential Geom Appl, 2004, 20(1): 67- 99.
  • 6Willmore T J. Riemannian geometry//Oxford Science Publications. New York: The Clarendon Press Oxford University Press, 1993.
  • 7Manin Y I. Frobenius manifolds, quantum cohomology, and moduli spaces//American Mathematical Society Colloquium Publications. Vol. 47. American Mathematical Society, Providence, RI, 1999.
  • 8Aganagic M, Klemm A, Marifio M, et al. The topological vertex. Commun Math Phys, 2005, 254:425-478.
  • 9Bershadsky M, Cecotti S, Ooguri H, et al. Kodaria-Spencer theory of gravity and exact results for quantum string amplitudes. Commun Math Phys, 1994, 165:311-428.
  • 10Borot G, Eynard B, Mulase M, et al. A Matrix model for simple Hurwitz numbers, and topologicla recursion. ArXiv: math.AG/0906.1206.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部