期刊文献+

基于Xu-White模型的横波速度预测 被引量:4

Prediction of S-Wave Velocity Based on Xu-White Model
下载PDF
导出
摘要 在叠前地震属性分析和叠前地震反演中,若缺失横波信息,将会降低解释精度,对油气勘探造成不利影响。因此,预测横波速度就显得十分重要。与各种预测横波速度的方法相比,Xu-White模型综合考虑孔隙度、密度、泥质含量等因素的影响,符合砂、泥岩地层的实际情况,具有较高的预测精度。但由于砂、泥岩孔隙纵横比难以在实验室测得,使Xu-White模型的应用受到限制。在对Xu-White模型研究的基础上,通过引入模拟退火算法和粒子群算法寻求最优解,避免了搜索过程陷入局部极小解,提高了横波速度预测的精度。该方法在大港油田的实际资料处理中取得了较好的效果。 In the prestack inversion and prestack seismic attributes analysis, the lack of S-wave information usually leads to a bad influ- ence on petroleum exploration by decreasing accuracy of seismic data interpretation. Hence, Prediction of S-wave velocity by using other methods is more significant. Xu-White model, compared with other methods, comprehensively takes account of the influences of porosity, density and clay content, which is suitable for real sand-mudstone formation characterization with higher predictive accuracy. But the application of Xu-White model has been limited because the aspect ratio of the inclusion can not be measured in the laboratory. This paper studies the Xu-White model, introduces simulated annealing algorithm and particle swarm optimization (PSO) to seek optimal solution, by which the local minimum solution is avoided during searching process, and the accuracy of S-wave velocity is obviously improved. The case study from real seismic data processing in an area of Dagang shows good results in application by using this method.
出处 《新疆石油地质》 CAS CSCD 北大核心 2016年第1期83-87,共5页 Xinjiang Petroleum Geology
基金 国家自然科学基金(41074104) 中石油科技创新基金项目(2015D-5006-0301)
关键词 横波速度预测 粒子群算法 XU-WHITE模型 模拟退火算法 S-wave velocity prediction PSO algorithm Xu-White model simulated annealing algorithm
  • 相关文献

参考文献21

二级参考文献144

共引文献211

同被引文献58

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部