期刊文献+

索赔盈余风险模型中精确大偏差 被引量:6

Precise large deviations for claim surplus risk model
下载PDF
导出
摘要 考虑了控制变化族(D族)上索赔过程与保费过程构成的索赔盈余风险模型,研究了此风险模型中带相依关系的随机变量的非随机和与随机和的尾概率渐近问题,利用求相依不同分布的随机变量的非随机和与随机和的精确大偏差方法,得到了带上延拓负相依和混合相依关系的不同分布的随机变量构成的索赔风险模型中的非随机和与随机和的精确大偏差渐近的结论,最后建立了索赔盈余风险模型中精确大偏差的渐近公式. The claim surplus risk model with dominated variation class(class D)including claim process and premium process,is considered.The asymptotic behavior of the tail probabilities of nonrandom sum and random sum of dependent random variables in the claim surplus risk model is studied,and some asymptotic results about the precise large deviations for non-random sum and random sum of upper extended negatively dependence and-mixing dependent random variables in the claim risk model are got by using the methods of precise large deviations for non-random sum and random sum of dependent and non-identically distributed random variables.Finally,the asymptotic formula of precise large deviation in the claim surplus risk model is obtained.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第1期64-69,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(11371077 11571058) 内蒙古民族大学科学研究基金资助项目(NMDYB1436 NMDYB1437) 中央高校基本科研业务费专项资金资助项目(DUT15LK19)
关键词 精确大偏差 上延拓负相依 索赔过程 precise large deviation upper extended negatively dependence claim process
  • 相关文献

参考文献6

二级参考文献12

  • 1HU Yijun.Large deviations for generalized compound Poisson risk models and its bankruptcy moments[J].Science China Mathematics,2004,47(2):311-319. 被引量:11
  • 2薛留根.混合序列强大数定律的收敛速度[J].系统科学与数学,1994,14(3):213-221. 被引量:17
  • 3邵启满,数学学报,1988年,31卷,6期,736页
  • 4KRippelberg C, Mikoseh T. Large deviations of heavy-tailed random sums with applications in insurance and finance [J]. Journal of Applied Probability, 1997, 34:293-308.
  • 5Ng K W, TANG Qi-he, YAN Jia-an, et al. Precise large deviations for sums of random variables with consistently varying tails [J]. Journal of Applied Probability, 2004, 41:93-107.
  • 6Sku6aitfi A. Large deviations for sums of independent heavy-tailed random variables [J]. Lithuanian Mathematical Journal, 2004, 44(2) : 198- 208.
  • 7Bingham N H, Goldie C M, Teugels J L. Regular Variation [M]. Cambridge: Cambridge University Press, 1987.
  • 8Athreya K B, Pantula S G. Mixing properties of Harris chains and autoregressive processes [J ]. Journal of Applied Probability, 1986, 23:880-892.
  • 9Bradley R C. On the f-mixing condition {or stationary random sequences [J]. Transactions of the American Mathematical Society, 1983, 276 (1) : 55-66.
  • 10Fryzlewiez P, Subba R S. Mixing properties of ARCH and time-varying ARCH processes [J]. Bernoulli, 2011, 17(1) :320-346.

共引文献21

同被引文献16

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部