期刊文献+

一种利用特征选择改进的行人检测模型 被引量:1

An improved human detection model using feature selection
下载PDF
导出
摘要 标准HOG模型在行人检测领域中最为经典,相比于标准模型中整齐划一的block,不同尺寸的block可以获得更多的细节信息。首先,在去除上下文背景的32×96尺寸模型基础上设计144个block特征;然后,提出类Fisher比计算block类别区分力;最后,利用NMS方法选出24个block,串接为1 854维的行人检测模型。实验结果表明,该利用特征选择改进的行人检测模型获得了显著的性能提升。 Standard HOG model is the most classic model in the field of human detection.Compared to uniform blocks in the standard model,blocks with different sizes can get more details.Firstly,144 blocks were designed on the basis of the 32×96model which the context of standard model was removed.Secondly,Fisher-like ratio was proposed to calculate blocks' discrimination performance.Finally,24 blocks were selected by NMS feature selection method and composed a 1854-dimensional human detection model.The experimental results indicate that the improved human detection model using feature selection achieves significant performance improvements.
作者 张强
出处 《微型机与应用》 2016年第2期43-46,共4页 Microcomputer & Its Applications
关键词 行人检测 特征选择 线性判别分析 非极大值抑制 human detection feature selection linear discriminant analysis non-maximum suppression
  • 相关文献

参考文献10

二级参考文献193

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3DUDA R O, HART P E, STORK D G. Pattern classification[ M] 2nd ed. San Francisco: WILEY, 2000.
  • 4KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm[ C]// Proceedings of Ninth National Conference on Artificial Intelligence. Cambridge: AAAI, 1992:129 - 134.
  • 5BURGES C J C. Geometric methods for feature extraction and dimensional reduction: A guided tour, MSR-TR-2004-55 [ R/OL]. [2009 -04 -01]. http://www. kernel-machines. org/publications/ Burges04.
  • 6LEWIS D D. Feature selection and feature extraction for text categorization[ C]// Proceedings of the Speech and Natural Language Workshop. Morristown: Association for Computational Linguistics, 1992:212-217.
  • 7YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//ICML-1997: 14th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1997:412 -420.
  • 8HOWLAND P, PARK H. Generalizing discriminant analysis using the generalized singular value decomposition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 995 - 1006.
  • 9MARTINEZ A M, KAK A C. PCA versus LDA[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 23 (2) : 228 - 233.
  • 10YE J P, JANARDAN R, PARK C H, et al. A new optimization criterion for generalized discriminant analysis on undersampled problems[ C]// Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2003: 419.

共引文献507

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部