期刊文献+

基于实时定位系统的监理人员管理和评价 被引量:6

Supervisor management and evaluation method based on real-time tracking
原文传递
导出
摘要 该文提出一种基于智能手机和实时定位系统的施工现场监理人员管理和评价的方法。通过安装全球定位系统(GPS)数据上传应用的智能手机采集现场监理人员位置信息,实时上传到服务器进行数据整合处理,将人员的位置和行为轨迹显示在Web页面上,实现实时监控。对收集到的GPS数据进行深度分析,识别出监理人员特定的工作情境,构建3个衡量工作量的指标:现场工作时间、有效工作时间、有效工作范围,从而评定监理工作绩效。通过模拟试验对方法的可行性进行了验证。试验结果表明:本文提出的方法可以准确确定监理人员的实时位置,有效识别其工作情境,提取的各项指标符合实际情况。该方法在重大水利工程建设管理中有较大的潜在应用空间。 A method was developed to provide prompt management and evaluation of supervisory staff behavior on dam construction sites.The system uses smart phones embedded with global positioning system(GPS)module for real-time location tracking.The supervisor location information is collected and uploaded to the server by the smart phones.The server processes the data and displays the locations and paths of each supervisor on a web page for real-time monitoring.Three indicators,the field work time,effective work time and effective working range,were developed to identify the specific work context and measure the supervisor workloads.The method was verified by simulated field tests that show that the method can accurately determine the real-time positions of the supervisors and can identify their work context.Thus,three indicators reflect the actual situation.The real-time tracking system is a useful tool for managing and evaluating field supervisor behavior in large hydraulic projects.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期950-956,963,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(51479100) 水沙科学与水利水电工程国家重点实验室开放课题基金(2013-KY-5 2014-KY-5)
关键词 水利工程 监理管理 全球定位系统(GPS)数据挖掘 情境识别 工作量测量 hydraulic engineering supervisor management global positioning system(GPS)data mining context recognition workload measuring
  • 相关文献

参考文献9

二级参考文献41

  • 1江毅东.2004年工程监理回顾与展望(上)[J].建筑,2005(1):59-66. 被引量:13
  • 2沈红心,周晓婷,王爱成.矿产资源开发预警系统研究[J].浙江大学学报(理学版),2005,32(6):663-667. 被引量:13
  • 3住房和城乡建设部.2007年建设工程监理统计公报[Z].2008.
  • 4Liu,G.W.,Shen Q.P.,Li H.,Shen L.Y.Factors constraining the development of professional project management in China [J]. International Journal of Project Management, 2004,22(3 ): 203-211.
  • 5[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 6[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 7[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 8[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.
  • 9[1]Pullar D V,Egenhofer M J.Toward formal definitions of topological relations among spatial objects[C]//In proceedings of the 3rd international symposium on spatial data handling,Sydney,Australia,August,1988:225-241.
  • 10[2]Kufoniyi O,Moloenaar M,Bouloucs T.Topologic editing of relationally structured single -valued vector maps[J].ITC Journal,1993 (4):332-339.

共引文献177

同被引文献148

引证文献6

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部