期刊文献+

基于兴趣变化的微博用户转发行为建模 被引量:6

Modeling of the forwarding behavior in microblogging with adaptive interest
原文传递
导出
摘要 社交媒体的出现推动了对用户在线行为规律的研究。该文探讨微博中用户的转发行为规律。对这一问题的回答能够帮助人们更好地理解影响用户行为的因素,并且对用户转发行为的准确描述有利于对信息传播施加干预和控制。该文参考一个兴趣驱动的人类行为动力学模型,在分析其用户行为时长的基础上,针对差异化的用户行为时长和昼夜作息因素,提出了一个改进模型用以描述微博用户的转发行为。实际数据中用户相邻转发行为时间间隔呈现重尾分布,仿真结果与之相符,证明了该模型的有效性和灵活性。 The emergence of social media has given rise to research on how online users behave. This paper describes how users forward messages in microblogging services. The results shed light on the factors affecting user decisions. A precise description of user forwarding behavior can also support the intervention and control of in- formation spreading. The lengths of activity periods in existing human dynamic models with adaptive interest were used to develop a modified model to describe user forwarding dynamics in microblogging services. This model takes into account both the differences in the durations of the activity cycles and the effect of circadian rhythms. The distribution of the time intervals between successive forwarding activities is heavy-tailed in the real data. The simulation results are consistent with the distribution in the real data which demonstrates the effectiveness and flexibility of this model.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第11期1163-1170,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(61425027) 赛博(CYBER)协同创新中心资助项目
关键词 微博 转发行为 建模 microblogging forwarding behavior modeling
  • 相关文献

参考文献17

  • 1Fu F, Liu L, Wang L. Empirical analysis of online social networks in the age of Web 2.0 [J]. Physica A ~ Statistical Mechanics and its Applications, 2008, 387(2-3) : 675-684.
  • 2Barabdsi A L. The origin of bursts and heavy tails in human dynamics [J]. Nature, 2005, 435(7039)~ 207 -211.
  • 3张晶,黄京华,黎波,严威.新浪企业微博口碑传播的实证研究[J].清华大学学报(自然科学版),2014,54(5):649-654. 被引量:7
  • 4李栋,徐志明,李生,刘挺,王秀文.在线社会网络中信息扩散[J].计算机学报,2014,37(1):189-206. 被引量:63
  • 5Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network [C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA~ ACM Press. 2003, 137- 146.
  • 6曹玖新,吴江林,石伟,刘波,郑啸,罗军舟.新浪微博网信息传播分析与预测[J].计算机学报,2014,37(4):779-790. 被引量:109
  • 7Peng H K, Zhu J, Piao D, et al. Retweet modeling using conditional random fields [C]//2011 IEEE 11th International Conference on Data Mining Workshops. Vancouver, Canada: IEEE Press, 2011: 336-343.
  • 8Gao S, Ma J, Chen Z. Modeling and predicting retweeting dynamics on Microblogging platforms [C]// Proceedings of the 8th ACM International Conference on Web Search and Data Mining. Oxford, UK: ACM Press, 2015: 107-116.
  • 9Jiang Z, Zhang Y, Wang H, et al. Understanding human dynamics in microblog posting activities [J]. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013(02) ~ P02006.
  • 10Wang C, Guan X, Qin T, et al. Modeling the heterogeneity of human dynamics based on the measurements of influential users in Sina Microblog [J]. Physica A, Statistical Mechanics and its Applications, 2015, 428 : 239 - 249.

二级参考文献119

  • 1欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法[J].清华大学学报(自然科学版),2005,45(S1):1743-1747. 被引量:70
  • 2周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 3周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:153
  • 4Pieter N, Michiel H. Mining Twitter in the cloud: A case study [C]// Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD 2010. Miami, USA: IEEE Computer Society, 2010: 107 -114.
  • 5Abraham R, Martinez T. Twitter: Network properties analysis [C]// Proceedings of the CONIELECOMP 2010 20th International Conference on Electronics Communications and Computers. Cholula Puebla, Mexico: IEEE Computer Society, 2010: 180 - 184.
  • 6wenE,SunV.新浪微博研究报告[Z/OL].(2011-05-20),http://www.techweb.com.cn/data/2011-02-25/916941.shtml.
  • 7HAN Ruixia. The influence of microblogging on personal public participation [C]// Proceedings of the 2010 IEEE 2nd Symposium on Web Society, SWS 2010. Beijing, China: Association for Computing Machinery, 2010:615 -618.
  • 8KANG Shulong, ZHANG Chuang. Complexity research of massively microhlogging based on human behaviors [C]//2010 2nd International Workshop on Database Technology and Applications, DBTA2010 Proceedings. Wuhan, China: IEEE Computer Society, 2010: 1 -4.
  • 9WANG Rui, JIN Yongsheng. An empirical study on the relationship between the followers' number and influence of microblogging [C]// Proceedings of the International Conference on E-Business and E-Government, ICEE 2010. Guangzhou, China: IEEE Computer Society, 2010: 2014- 2017.
  • 10Westman S, Freund L characters or less : Genres on interaction in 140 twitter [C]//IIiX 2010 Proceedings of the 2010 Information Interaction in Context Symposium. New Brunswick, USA: Association for Computing Machinery, 2010:323 - 326.

共引文献288

同被引文献48

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部