期刊文献+

基于云计算的虚拟机放置节能优化算法 被引量:2

Engry-conservation Placement Algorithm for Virtual Machines Based on Cloud Computing
下载PDF
导出
摘要 多数企业都会将数据部署到云数据中心,这使得能耗问题变得突出。本文针对数据中心的能耗问题进行讨论研究,通过对虚拟机放置模型的改进,实现了全局遗传算法的优化。全局遗传算法的实现过程包括编解码、种群初始化、交叉算子等遗传算子。实验结果表明,优化后的全局遗传算法能够有效的降低云数据中心的耗能,具有一定的应用价值。 Most of companies will upload their data to Cloud Data Centers,which makes the problem of energy consumption become more and more prominent. However,by discussing and researching the problem,there is way to improve the genetic algorithm by means of optimizing the model of how Virtual Machine placed. The implementation process of global genetic algorithm includes codecs,population initialization,crossover and other genetic operators. The experiment result indicates that the genetic algorithm has much more superiority than traditional algorithm in reducing energy consumption of Cloud Data Centers,which proves its practical application value.
出处 《长春理工大学学报(自然科学版)》 2015年第6期150-153,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 云计算 遗传算法 虚拟机 节能 cloud computing genetic algorithm virtual machine energy conservation
  • 相关文献

参考文献8

  • 1师雪霖,徐恪.云虚拟机资源分配的效用最大化模型[J].计算机学报,2013,36(2):252-262. 被引量:78
  • 2Cardosa M,Korupolu M,Singh A.Shares and utili- ties based power consolidation in virtualized server environments[C].In proceedings of the Ilth IFIP/ IEEE Integrated Network Management (IM 2009),Long Island,NY,USA,2009:327-334.
  • 3Kusic D,Kephart J O,Hanson J E,et al.Power and performancee management of virtualized com- puting environments via lookahead control[J!.Clus- ter Computing,2009,12(1):1-15.
  • 4Gargi Dasgupta,Amit Sharma,Akshat Venna,et al.Workload management for power efficiency in virtu- alized data centers[J].Communications of the ACM,2011,54(7):131-141.
  • 5Chen Gong,He Wenbo,Liu Jie,et al.Ener- gy-aware server provisioning and load dispatching for connection-intensive internet services[C].In pro- ceeding of the 5th USENIX Symposium on Net- worked Systems Design and Implementation (NSDI'08),San Francisco,2008:^337-350.
  • 6Fan Xiaobo,Weber Wolf-Dietrich,Luiz Andre Bar- roso.Power provisioning for a warehouse-sized computer[J].ACM SIGARCH Computer Architec- ture News,2007,35(2):13-23.
  • 7Anton Beloglazov,Jemal Abawajy,Rajkumar Buyya.Energy-aware resource allocation heuristics for effi- cient management of data centers for Cloud com- puting[J].F uture Generation Computer Systems,2012,28(5):755-768.
  • 8从立钢,郭利菊.云存储系统安全技术研究[J].长春理工大学学报(自然科学版),2014,37(3):132-134. 被引量:4

二级参考文献31

  • 1Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 2Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 3Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 4Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 5Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 6Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 7Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 8Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.
  • 9Beltrame G, Brandolese C, Fornaciari W, Salice F, Sciuto D, Trianni V. Dynamic modeling of inter-instruction effectsfor execution time estimation//Proceedings of the 14th Inter- national Symposium on System Synthesis. Canada, 2001: 136-141.
  • 10Kelly F P, Maulloo A K, Tan D K H. Rate control for com- munication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 1998, 49(3): 237-252.

共引文献80

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部