摘要
令H是一个复的、可分的、无穷维的Hilbert空间,L(H)表示H上有界线性算子的全体.算子T∈L(H)称为强不可约的,如果的换位代数没有非平凡的幂等元.本文对于算子类F={T∈L(H)<σ(T)连通,且A'(T)={R(T)<R为σ(T)上的解析函数}进行了研究,对于T∈F,证明了T是强不可约算子,且V(A'(T))=N,K_0(A'(T))=Z,这里N={0,1,2,3,...},Z是整数群.
Let H be a complex, separable, infinite dimensional Hilbert space and L(H) denote the collection of bounded linear operators on H. An operator T in L(H)is said to be strongly irreducible, if A'(T) has no non-trivial idempotent.In the paper, we discuss the following operator class: F={T∈L(H)σ(T)= is connected and A'(T)={R(T)R is the holomorphic function in σ(T)}. For T∈F,we prove that T is a stongly irreducible operator and V(A'(T))=N,K_0(A'(T))=Z,0,where N= {0, 1, 2, 3,...}, Z is integer group.
出处
《河北工业大学学报》
CAS
2015年第6期73-75,共3页
Journal of Hebei University of Technology
基金
国家自然科学基金(11171087
10701031)
关键词
幂等元
强不可约算子
算子的换位代数
0群
归纳序列
idempotent
strongly irreducible operator
commutant algebra
0group
inductive sequence