摘要
The aim of this work is to identify the range of applicability of Arrhenius type temperature dependence for Ammonia Oxidizing Bacteria (AOB) subjected to tem- perature time gradients through continuous titrimetric tests. An innovative online differential titrimetric technique was used to continuously monitor the maximum biologic ammonia oxidation rate of the biomass selected in a pilot scale membrane bioreactor, as a function of temperature time gradients. The monitoring technique is based on the measurement of alkalinity and hydrogen peroxide con- sumption rates in two parallel reactors operated in non- limiting substrate conditions for AOB; both reactors were continuously fed with mixed liquor and in one of them AOB were inhibited with allylthiourea. The effects of temperature decrease rates in the range 1 to 4℃h^-1 were evaluated by controlling the titrimetric reactor in the temperature range 10℃-20℃. The dependence of growth kinetics on temperature time gradients and the range of applicability of Arrhenius model for temperature depen- dency of AOB growth kinetics were assessed. The Arrhenius model was found to be accurate only with temperature gradients lower than 2℃·h^-1. The estimated Arrhenius coefficients (θ) were shown to increase from 1.07 to 1.6 when the temperature decrease rate reached 4℃.h^-1.
The aim of this work is to identify the range of applicability of Arrhenius type temperature dependence for Ammonia Oxidizing Bacteria (AOB) subjected to tem- perature time gradients through continuous titrimetric tests. An innovative online differential titrimetric technique was used to continuously monitor the maximum biologic ammonia oxidation rate of the biomass selected in a pilot scale membrane bioreactor, as a function of temperature time gradients. The monitoring technique is based on the measurement of alkalinity and hydrogen peroxide con- sumption rates in two parallel reactors operated in non- limiting substrate conditions for AOB; both reactors were continuously fed with mixed liquor and in one of them AOB were inhibited with allylthiourea. The effects of temperature decrease rates in the range 1 to 4℃h^-1 were evaluated by controlling the titrimetric reactor in the temperature range 10℃-20℃. The dependence of growth kinetics on temperature time gradients and the range of applicability of Arrhenius model for temperature depen- dency of AOB growth kinetics were assessed. The Arrhenius model was found to be accurate only with temperature gradients lower than 2℃·h^-1. The estimated Arrhenius coefficients (θ) were shown to increase from 1.07 to 1.6 when the temperature decrease rate reached 4℃.h^-1.