期刊文献+

计算机数字图像技术在AUV水下管道检测中的应用 被引量:2

The application of computer digital image technology in detection of AUV underwater pipeline
下载PDF
导出
摘要 本文主要研究了计算机数字图像技术在对AUV拍摄的水下管道图片处理过程中的作用。主要对质量较差的水下图片进行了灰度变换、直方图处理以增强其对比度,使得图像更为清晰,然后采用高斯滤波和图像分割技术对数字图像进行了提取,获得了图像的特征参数,以此可以初步实现管道图像的计算机解读。从图像处理的效果来看,通过本文的处理方法,模糊的水下图像可以转化为供机器视觉系统提取的准确的数字图像,这为进一步的理解图像信息,以进行AUV的自主光学管道跟踪与航路规划等提供了技术基础。 This paper mainly studies the role of computer digital image processing in the process of underwater pipeline image processing by AUV.Mainly for the poor quality of the underwater image of the gray transform, histogram processing to enhance its contrast,making the image more clear,Then, the digital image is extracted by using Gauss filtering and image segmentation technology, and the characteristic parameters of the images are acquired.From the effect of image processing,the image can be transformed into the image of the machine vision system,This provides a technical basis for the further understanding of the image information,which provides the basis for the AUV's autonomous optical pipeline tracking and route planning.
作者 高本国
出处 《电子测试》 2015年第11期164-166,共3页 Electronic Test
关键词 计算机数字图像技术 AUV 水下管道检测 computer digital image technology AUV underwater pipeline detection
  • 相关文献

参考文献3

  • 1林楠.AUV管道巡检的相关研究与工程应用[J].机器人,2013,35(4):56-59.
  • 2唐旭东,朱炜,庞永杰,李晔.水下机器人光视觉目标识别系统[J].机器人,2009,31(2):171-178. 被引量:23
  • 3周飞.计算机视觉检测方法研究综述[J].光学技术,2014,12(4):315-321.

二级参考文献10

  • 1刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 2Kia C, Arshad M R. Robotics vision-based heuristic reasoning for underwater target tracking and navigation[J]. International Journal of Advanced Robotic Systems, 2005, 2(3): 245-250.
  • 3Cufi X, Garcia R, Ridao E An approach to vision-based station keeping for an unmanned underwater vehicle[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C], Piscataway, NJ, USA: IEEE, 2002. 799-804.
  • 4Balasuriya A, Ura T. Vision-based underwater cable detection and following using AUVs[A]. Proceedings of the Oceans 2002 Conference and Exhibition[C]. Piscataway, NJ, USA: IEEE, 2002. 1582-1587.
  • 5Yap P T, Paramesran R, Ong S H. Image analysis by krawtchouk moments[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1367-1377.
  • 6Hu M K. Visual-pattern recognition by moment invariants[J]. IRE Transactions on Information Theory,1962, 8(2): 179-187.
  • 7Mao K Z, Tan K C, Ser W. Probabilistic neural-network structure determination for pattern classification[J]. IEEE Transactions on Neural Networks, 2000, 11(4): 1009-1016.
  • 8Cerqueira J J E Palhares A G B, Madrid M K. A simple adaptive back-propagation algorithm for multilayered feedforward perceptrons[A]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics[C]. Piscataway, NJ, USA: IEEE, 2002. 590-595.
  • 9de Castro L N, Timmis J I. Artificial immune systems as a novel soft computing paradigm[J]. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2003, 7(8): 526-544.
  • 10罗小平,韦巍.一种基于生物免疫遗传学的新优化方法[J].电子学报,2003,31(1):59-62. 被引量:19

共引文献22

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部