摘要
针对传统算法进行食品加工过程中恒温控制的过程中,由于结构复杂,造成运算量增大,从而降低了恒温控制的实时性。为此,提出一种基于优化PID的食品加工过程中的恒温控制方法。PID的控制参数通过BP神经网络模型进行优化,能够得到最优的初始PID控制参数,在温度调节的过程中,计算反馈调节参数,将当前食品加工过程中的温度变化情况反馈到PID输入端进行温度调节,从而实现了食品加工过程中的恒温控制。仿真实验结果表明,利用本文算法进行食品加工过程中的恒温控制,降低控制过程中的超调量,缩短控制时间,效果令人满意。
Because of the computation quantity is increased in the food processing temperature control by using the traditional algorithm, which reduces the real-time performance of constant temperature control. In order to solve the above problems, a method of constant temperature control in food processing based on Optimization PID (proportional-integral-derivative, PID) is proposed. The control parameters of PID are optimized by BP neural network model, which can get the optimal initial PID control parameters. In the process of temperature regulation, the feedback regulation parameters are calculated. The temperature changes in the process of food processing are fed back to the PID input. The results of simulation experiment shows that the method proposed in this paper can be used in the process of constant temperature control in food processing, and it can reduce the overshoot and shorten the control time. The results are satisfactory.
出处
《电气技术》
2015年第12期76-80,共5页
Electrical Engineering
关键词
优化PID
食品加工
恒温控制
optimize PID
food processing
constant temperature control