期刊文献+

亚麻纤维/玄武岩(玻璃)纤维混杂复合材料的力学性能、断面形貌和DMA的性能表征 被引量:2

Mechanical properties,morphology and DMA of flax/basalt(glass) fiber fabric hybrid composite baterials
下载PDF
导出
摘要 研究了亚麻纤维分别与玄武岩纤维和玻璃纤维(F/B和F/G)混杂质量比对混杂复合材料(B1-B3和G1-G3)的密度、力学性能和DMA性能。结果表明,随BF(玄武岩纤维)和GF(玻璃纤维)含量增加,F/G复合材料的理论密度和实际密度都增加,而F/B的理论密度降低,实际密度增大;B3的弯曲强度、弯曲模量和冲击韧性分别比B1高40.7%,64.5%和39.4%,G3的弯曲强度、弯曲模量和冲击韧性分别比G1高26.3%,48.0%和58.9%,复合材料F/G弯曲强度的比强度和储存模量的比模量与F/B相当,但F/G的冲击韧性和动态热机械性能都明显比F/B更好,同时F/G混杂体系的界面结合强度更高。SEM(扫描电子显微镜)表明亚麻纤维与UP结合较差,BF与UP的界面结合不如GF与UP,因此F/G力学性能比F/B更好。 The composites(B1-B3 and G1-G3)were prepared by changing the weight ration between flax and basalt fibers or glass fibers(F/B and F/G),the effect of theoretical density,actual density,mechanical and DMA performance were studied as well.The results show that actual density and theoretical density values of F/G increase gradually with the increase of GF contents and actual density of F/B increase with the increase of BF contents,except theoretical values.Flexural strength,flexural modulus and impact strength of F/B and F/G that are enhanced with increasing the amount of BF and GF are 67.2%(26.3%),67.8%(48.0%)and 39%(58.9%)higher than that of B1(G1),respectively.It was found that specific strength and modulus of F/G and F/B was approximate,but impact strength,dynamic thermophysical properties and interfacial adhesion of F/G was obviously better than that of F/B.SEM graphs indicate a poor interfacial adhesion between flax fiber and UP matrix and superior interfacial adhesion in GF and UP matrix.So mechanical properties of F/G was better than that of F/B.
出处 《功能材料》 EI CAS CSCD 北大核心 2016年第2期2078-2083,共6页 Journal of Functional Materials
基金 国家自然科学基金资助项目(31170535)
关键词 亚麻纤维 玄武岩纤维 玻璃纤维 DMA 力学性能 flax fiber basalt fibers glass fibers DMA mechanical properties
  • 相关文献

参考文献4

二级参考文献29

  • 1康宏亮,陈成,董丽松.聚乳酸共混体系的研究进展[J].高分子通报,2004(5):10-19. 被引量:34
  • 2曹勇,柴田信一.甘蔗渣的碱处理对其纤维增强全降解复合材料的影响[J].复合材料学报,2006,23(3):60-66. 被引量:37
  • 3拉迈亚‘穆萨拉.隐色体染料化学与应用[M].董川,双少敏,译.北京:化学工业出版社,2010:1-33,98-158.
  • 4Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance[ J ].Solar Energy Materials & Solar Cells, 2009, 93(9): 1685-1687.
  • 5Clemons C. Wood-plastic composites in the United States[J]. Forest Produets journal, 2002, 52(6): 10-18.
  • 6American Society for Testing and Materials. ASTM E 424-71-2001 Standard test method for solar energy transmittance and reflectance (terrestrial) of sheet materials[ S]. United States: American Society for Testing and Materials International, 2001.
  • 7Karlessi T, Santamouris M, Aostlakis K, et al. Development and testing of thermoehromie coatings for buildings and urban structures [J]. Solar Energy, 2009, 83(4): 538-551.
  • 8Gauthier C, Reynaud E, Vassoille R, et al. Analysis of the non- linear viscoelastic behavior of silica filled styrene butadiene rubber [J]. Polymer, 2004, 45(8): 2761-2771.
  • 9SandersJE,BaleSD,NeumannT.Tissueresponsetomicrofibersofdifferentpolymers:polyester,polyethy-lene,polylacticacid,andpolyurethane[J].BiomedMaterRes,2002,62(2):222-227.
  • 10MartinO,AvérousL.Poly (lacticacid):plasticizationandpropertiesofbiodegradable multiphasesystems[J].Polymer,2001,42(14):6209-6219.

共引文献105

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部