期刊文献+

基于应变梯度理论的纳米悬臂梁的大位移分析 被引量:2

Large deflection analysis of a nanoscaled cantilever beam with strain gradient effect
下载PDF
导出
摘要 以Aifantis发展的应变梯度理论为基础,探讨微纳米尺度下线弹性悬臂梁受集中载荷作用下的大变形问题。基于Euler-Bernoulli梁理论,考虑应变梯度的影响,建立悬臂梁发生大变形时的弹性微分方程,并给出相应的边界条件。通过打靶法并借助于Math CAD软件,求得考虑应变梯度时悬臂梁在自由端集中载荷作用下的挠度数值解。结果表明,在微纳米尺度下应变梯度对悬臂梁的变形有较大影响,弹性变形梯度系数对梁发生大变形比发生小变形时的影响更明显,且弹性梯度系数对于梁的变形有抑制作用。 In this study,we discuss the deformation of a micro / nanoscaled cantilever under a concentrated load. The modeling is based on the strain gradient theory developed by Aifantis. Based on the Euler-Bernoulli beam theory,and considering the effect of strain gradient,the governing equation of the large deformation of a cantilever was built,and the boundary conditions were given. Using the shooting method and the Math CAD software,we obtain the numerical solution of a cantilever with strain gradient,under a concentrated load at the free end. This solution is compared with that of a beam with infinitesimal deformation. The result shows that at the micro / nano scale,the strain gradient has a great effect on the cantilevers deformation. In this case,the gradient coefficient affects a beam more significantly when it is in the finite deformation than in the infinitesimal deformation. Moreover,the gradient coefficient will restrain the deformation of the beam.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期116-120,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家自然科学基金项目(11272357) 山东省杰出青年自然科学基金项目(JQ201302)
关键词 纳米悬臂梁 大变形 应变梯度 能量法 变分 nanoscaled cantilever large deformation strain-gradient energy method variation
  • 相关文献

参考文献16

  • 1FLECK N A, MULLER G M, ASHBY M F, et al. Straingradient plasticity: theory and experiment [J]. ActaMetallurgica et Materialia, 1994,42(2):475-487.
  • 2STLKEN J S, EVANS A G. A microbend test methodfor measuring the plasticity length scale [J]. Acta Mate-rialia, 1998,46(14):5109-5115.
  • 3NIX W D. Mechanical properties of thin films [J]. Met-allurgical Transactions A, 1989,20(11):2217-2245.
  • 4STELMASHENKO N A, WALLS M G, BROWN L M, etal. Microindentations on W and Mo oriented single crys-tals: an STM study [J]. Acta Metallurgica et Materialia,1993,41(10):2855-2865.
  • 5MA Q, CLARKE D R. Size dependent hardness of silversingle crystals [J]. Journal of Materials Research, 1995,10(4):853-863.
  • 6POOLE W J, ASHBY M F, FLECK N A. Micro-hard-ness of annealed and work-hardened copper polycrystals[J]. Scripta Materialia, 1996,34(4):559-564.
  • 7MCELHANEY K W, VLASSAK J J, NIX W D. Determi-nation of indenter tip geometry and indentation contact ar-ea for depth-sensing indentation experiments [J]. Journalof Materials Research, 1998,13(5):1300-1306.
  • 8AIFANTIS E C. On the microstructural origin of certaininelastic models [J]. Journal of Engineering Materialsand Technology, 1984,106(4):326-330.
  • 9ZBIB H M, AIFANTIS E C. On the localization and post-localization behavior of plastic deformation I: on the initi-ation of shear bands, II: on the evolution and thickness ofshear bands, III: on the structure and velocity of thePortevin-Le chatelier bands [J]. Res Mechanica, 1988,23(2/3):261-277,279-305.
  • 10M譈HLHAUS H B, ALFANTIS E C. A variational prin-ciple for gradient plasticity [J]. International Journal ofSolids and Structures, 1991,28(7):845-857.

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部