摘要
以Aifantis发展的应变梯度理论为基础,探讨微纳米尺度下线弹性悬臂梁受集中载荷作用下的大变形问题。基于Euler-Bernoulli梁理论,考虑应变梯度的影响,建立悬臂梁发生大变形时的弹性微分方程,并给出相应的边界条件。通过打靶法并借助于Math CAD软件,求得考虑应变梯度时悬臂梁在自由端集中载荷作用下的挠度数值解。结果表明,在微纳米尺度下应变梯度对悬臂梁的变形有较大影响,弹性变形梯度系数对梁发生大变形比发生小变形时的影响更明显,且弹性梯度系数对于梁的变形有抑制作用。
In this study,we discuss the deformation of a micro / nanoscaled cantilever under a concentrated load. The modeling is based on the strain gradient theory developed by Aifantis. Based on the Euler-Bernoulli beam theory,and considering the effect of strain gradient,the governing equation of the large deformation of a cantilever was built,and the boundary conditions were given. Using the shooting method and the Math CAD software,we obtain the numerical solution of a cantilever with strain gradient,under a concentrated load at the free end. This solution is compared with that of a beam with infinitesimal deformation. The result shows that at the micro / nano scale,the strain gradient has a great effect on the cantilevers deformation. In this case,the gradient coefficient affects a beam more significantly when it is in the finite deformation than in the infinitesimal deformation. Moreover,the gradient coefficient will restrain the deformation of the beam.
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第1期116-120,共5页
Journal of China University of Petroleum(Edition of Natural Science)
基金
国家自然科学基金项目(11272357)
山东省杰出青年自然科学基金项目(JQ201302)
关键词
纳米悬臂梁
大变形
应变梯度
能量法
变分
nanoscaled cantilever
large deformation
strain-gradient
energy method
variation