期刊文献+

基于Golay互补序列的压缩感知稀疏信道估计算法 被引量:3

Compressed Sensing Channel Estimation Algorithm Based on Deterministic Sensing with Golay Complementary Sequences
下载PDF
导出
摘要 该文针对现有基于压缩感知的信道估计方法峰均功率比高、计算量大等问题,使用确定性格雷(Golay)序列作为训练序列对稀疏信道进行信道估计,在接收端实现了对信道冲激响应的估计,给出了估计模型和具体的算法推演,推导了该方法的峰均功率比,并与基于随机高斯序列的压缩感知信道估计方法的性能、峰均功率比和计算量进行了比较。仿真实验表明:格雷序列以及随机高斯序列两种序列都可以重构出稀疏信道非零抽头系数,但是格雷序列对稀疏信道冲激响应的确定性观测估计值的均方误差(MSE)和匹配度性能(Match Rate,MR)均优于随机高斯序列,计算量降低了许多,且在OFDM系统中峰均功率比大大降低。 To deal with problems of large Peak-to-Average Power Ratio(PAPR) and computation complexity in existing channel estimation algorithm based on compressed sensing, Golay complementary sequence is utilized to estimate sparse channel as a deterministic training sequence. Estimation model and algorithm are provided in detail. The PAPR of this method is deduced and its performance, PAPR and computation complexity are compared with Gaussian random sequence. The simulation result indicates that Golay sequence and Gaussian random sequence can reconstruct nonzero tap coefficients. But Golay sequence outperforms Gaussian random sequence both in the Mean Square Error(MSE) and Match Rate(MR) for estimating sparse channel impulse response. And the computation and PAPR are reduced significantly in the OFDM system.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第2期282-287,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61372127) 湖南省自然科学基金(13JJ3065)~~
关键词 信道估计 压缩感知 GOLAY互补序列 稀疏信道 Channel estimation Compressed Sensing(CS) Golay complementary sequences Sparse multipath
  • 相关文献

参考文献21

  • 1叶新荣,朱卫平,张爱清,孟庆民.OFDM系统双选择性慢衰落信道的压缩感知估计[J].电子与信息学报,2015,37(1):169-174. 被引量:9
  • 2TAUBOCK G and HLAWATSCH F. A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Las Vegas, NV, 2008: 2885-2888.
  • 3DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4TSAIG Y and DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
  • 5CANDES E and ROMBERG J. Robust signal recovery from incomplete observations[C]. IEEE International Conference on Image Processing, Atlanta, GA, 2006: 1281-1284.
  • 6CANDES E, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(3): 489-509.
  • 7CANDES E and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 8BAJWA W U, HAUPT J, RAZ G, et al. Compressed channel sensing[C]. CISS 42nd Annual Conference on Information Sciences and Systems, Princeton, N J, 2008: 5-10.
  • 9COHEN K M, ATTIAS C, and FARBMAN B. Channel estimation in UWB channels using compressed sensing[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014: 1966-1970.
  • 10WANG Weidong, YANG Junan, and ZHANG Chun. A novel compressed sensing ultra-wideband channel estimation method based on non-convex optimization[J]. International Journal of Communication Systems, 2015, 28(3): 472-482.

二级参考文献16

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Xiao Xiao-chao, Zheng Bao-yu, and Wang Chen-hao. Compressed channel estimation based on optimized measurement matrix[C]. International Conference on Wireless Communication and Signal Processing (WCSP), Nanjing, 2011: 1-5.
  • 3Eiwen D, Taubock G, and Hlawatsch F. Compressive tracking of doubly selective channels in multicarrier systems based on sequential delay-doppler sparsity[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Prague, 2011: 2928-2931.
  • 4Taubock G and Hlawatsch F. Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271.
  • 5Eiwen D, Taubock G, and Hlawatsch F. Multichannel- compressive estimation of doubly selective channels in MIMO-OFDM systems: exploiting and enhancing joint sparsity[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas TX, 2010: 3082-3085.
  • 6Qi Chemhao and Wu Le-nan. Optimized pilot placement for sparse channel estimation in OFDM systems[J]. IEEE Signal Processing Letters, 2011, 18(12): 749-752.
  • 7Zhao Yu-ping and Huang Ai-ping. A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transform-domain process[C]. IEEE 47th Vehicular Technology Conference, Phoenix, AZ, 1997, Vol 3: 2089-2093.
  • 8Scaglione A and Xiao Li. Compressed channel sensing: is the restricted isometry property the right metric[C]. 17th International Conference on Digital Signal Processing (DSP),Corfu, 2011: 1-8.
  • 9Duarte M F and Sarvotham S. Distributed compressed sensing of jointly sparse signals[C]. The Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove CA, 2005:1537-1541.
  • 10Duarte M F, Wakin M B, and Baron D. Universal distributed sensing via random projections[C]. The International Conference on Information Processing in Sensor Networks (IPSN), Nashville TN, 2006: 177-185.

共引文献16

同被引文献25

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部