期刊文献+

1,3-丁二烯热裂解的动力学计算与模型研究 被引量:8

Kinetic Calculation and Modeling Study of 1,3-Butadiene Pyrolysis
下载PDF
导出
摘要 1,3-丁二烯是碳氢燃料燃烧和裂解过程中生成的一种重要产物,也是形成多环芳烃(PAHs)的一种重要前驱体。目前,关于1,3-丁二烯燃烧实验以及机理的研究较多,但是其热裂解机理的研究较少。本文在B3LYP/CBSB7水平下对1,3-丁二烯裂解过程中相关反应的反应物、产物以及过渡态进行了几何结构优化和频率计算,并通过组合方法CBS-QB3计算得到了单点能和热力学参数。对于紧致过渡态的反应和无能垒反应,分别采用过渡态理论(TST)和可变反应坐标过渡态理论(VRC-TST)计算其高压极限条件下的反应速率常数。计算得到的反应速率常数与已有文献报导的结果吻合较好。通过量子化学计算,对Hidaka等人提出1,3-丁二烯的热裂解机理模型进行了更新和改进:更新后的机理模型包含45个物种和224步反应,并对更新后的机理模型进行了模拟验证。结果表明,更新的机理模型能更好地预测1,3-丁二烯激波管裂解实验过程中C_2H_2、1-丁烯-3-炔(C_4H_4)以及苯(C_6H_6)主要产物的浓度分布,为进一步完善核心机理(C_0-C_4)模型提供了可靠的热、动力学参数。 1,3-Butadiene is an important product in combustion and pyrolysis of hydrocarbon fuels and it is also an important precursor to form polycyclic aromatic hydrocarbons(PAHs). Currently, a variety of experimental and mechanism studies have been performed on 1,3-butadiene oxidation. However, few studies about pyrolysis mechanism of 1,3-butadiene have been done. In this work, the optimization of the geometries and the vibrational frequencies for the reactants, products, and transition states of the relevant reactions in 1,3-butadiene pyrolysis have been performed at the B3LYP/CBSB7 level. Their single point energies and the thermodynamic parameters are also calculated by using the composite CBS-QB3 method. The high-pressure limit rate constants for tight transition state reactions and barrierless reactions are obtained by transition state theory and variable reaction coordinate transition state theory, respectively. The calculated rate constants in this work are in good agreement with those available from literature. Furthermore, the mechanism of Hidaka et al. is updated with replacing the calculated rate constants of reactions in this work to simulate the shock tube experiment results of 1,3-butadiene pyrolysis and the updated mechanism consists of 45 species and 224 reactions. It can be seen that the updated mechanism can improve the concentration profiles of the main products, ethylene, 1-butylene-3-acetylene, and benzene in 1,3-butadiene pyrolysis. It can also provide reliable kinetic and thermodynamic parameters to further improve the core mechanism of C0-C4 species.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第2期453-464,共12页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(91441114 91441132)资助项目~~
关键词 1 3-丁二烯 热裂解机理 速率常数 动力学模拟 1 3-Butadiene Pyrolysis mechanism Rate constant Kinetic simulation
  • 相关文献

参考文献36

  • 1姚通,钟北京.正癸烷热解的小规模化学动力学机理模型[J].物理化学学报,2013,29(7):1385-1395. 被引量:2
  • 2Zeng, M. R.; Yuan, W. H.; Wang, Y. Z.; Zhou, W. X.; Zhang, L. D.; Qi, F.; Li, Y. Y. Combust. Flame 2014, 161, 1701. doi: 10.1016/j.combustflame.2014.01.002.
  • 3Hughes, K.; Meek, M. E.; Walker, M.; Beauchamp, R. 1,3- Butadiene: Human Health Aspects. In Concise International Chemical Assessment Document 30; WHO: Geneva, Switzerland, 2001; pp 1-73.
  • 4Vaughan, W. E. J.. Am. Chem. Soc 1932, 54, 3863. doi: 10.1021/ ja01349a008.
  • 5Kistiakovsky, G. B.; Ransom, W. W. J. Chem. Phys. 1939, 7, 725. doi: 10.1063/1.1750519.
  • 6Harkness, J. B.; Kistiakowski, G. B.; Meats, W. H. J. Chem. Phys. 1937, 5, 682. doi: 10.1063/1.1750100.
  • 7Granata, S.; Faravelli, T.; Ranzi, E.; Olten, N.; Senkan, S. Combust. Flame 2002, 131,273. doi: 10.1016/S0010-2180(02)00407-8.
  • 8Dagaut, E; Cathonnet, M. Combust. Sci. TechnoL 1998, 140, 225. doi: 10.1080/00102209808915773.
  • 9Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Int. J. Chem. Kinet. 1996, 28, 137.
  • 10Tsang, W. Chemical Activation Reactions in the Heptane Combustion Kinetics Database. In AIAA 44th Aerospace Sciences Meeting and Exihibt, American Institute of Aeronautics and Astronautics, Reno, Nevada, January 9-12, 2006.

二级参考文献35

  • 1Emeric, D.; Marc, B.; Olivier, H.; Marie, P. M.; Gascoin, N.; Gillard, P. Fuel Reforming for Scram jet Thermal Management and Combustion Optimization. AIAAlCIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy, May 16-20,2005.
  • 2Falempin, F.; Bouchez, M.; Salmon, T.; Lespade, P.; Avrashkov, V. An Innovative Technology for Fuel-Cooled Composite Materials Structure. AIAAlNAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, April 24-27, 2001.
  • 3Emeric, D.; Marc, B.; Roda, B.; Battin, F. L.; Marie, P. M.; Rene, F. Contribution to Scramjet Active Cooling Analysis Using N-dodecane Decomposition Model. 12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, Virginia, America, December 15-19, 2003.
  • 4Huang, H.; Sobel, D. R; Spadaccini, L. J. Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling. 38th AIAAlASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, America, July 7 -11, 2002.
  • 5Dagaut, P.; Reuillon, M.; Boettner, J. C.; Cathonnet, M. Symp. Int. Combust. 1994,25 (1),919. doi: 10.1016/S0082-0784(06) 80727-7.
  • 6Dagaut, P.; Bakali, E. A; Ristori,A. Fuel 2006, 85 (7-8), 944.
  • 7Humer, S.; Frassoldati, A; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R; Seshadri, K. Proc. Combust. Inst. 2007,31 (1), 393. doi: 10.1016/j.proci.2006.08.008.
  • 8Yu, J.; Eser, S. Ind. Eng. Chem. Res. 1997,36 (3),585. doi: 10. 1021/ie9603934.
  • 9焦毅,李军,王静波,王健礼,朱权,陈耀强,李象远.物理化学学报,2011,27,1061.doi:10.3866/PKU.WHXB20110437.
  • 10Zeppieri, S. P.; Klotz, S. D.; Dryer, F. L. Proc. Combust. Inst. 2000,28 (2),1587. doi: 10.1016/S0082-0784(00)80556-1.

共引文献1

同被引文献83

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部